Pilot Operated 2 Port Solenoid Valve Series VXD21/22/23 For Air, Water, Oil

Specifications

For Oil

	uo	
	onstructi	
H	0	
	limensions	

	Orifice size	10 mmø 15 mmø				
	<u>e</u>	10 111110				
		20 mmø		_		—
	ō	25 mmø				
		Port size (Thread)	1/4 3/8 1/2	3/8 1/2	3/4	1
			1/2			
		Model	VXD227 ²	VXD238 ²	VXD239 ²	
	ze					
	ice si	40 mmø	_			
	Orif	50 mmø	—			
9 9			32A	40A	50A	
		Orifice size		(Inread) 1/2 Model VXD227% Nodel Nodel Point size 32A	(Inread) 1/2 1/2 Model VXD227% VXD238% Signature 40 mmø — 40 mmø — — So mmø — — Port size 324 404	Image: Second system Image: Second system <td< td=""></td<>

Common Specifications

Standard Specifications

	Valve construc	tion	Pilot operated 2 port diaphragm type		
	Withstand pres	sure (MPa)	8A to 25A: 5.0, 32A to 50A: 2.0		
Valve	Body material		Brass (C37), Stainless steel, CAC407		
specifications	Seal material		NBR, FKM, EPDM		
	Enclosure		Dusttight, Low jetproof (equivalent to IP65) Note 1)		
	Environment		Location without corrosive or explosive gases		
		AC (Class B coil, Built-in full-wave rectifier type)	100 VAC, 200 VAC, 110 VAC, 220 VAC, 230 VAC,		
	Rated voltage	AC (Class B coil/H coil) Note 2)	240 VAC, 48 VAC		
		DC (Class B coil only)	24 VDC, 12 VDC		
Coil	Allowable volta	age fluctuation	±10% of rated voltage		
specifications	Allowable	AC (Class B coil, Built-in full-wave rectifier type)	10% or less of rated voltage		
	leakage	AC (Class B coil/H coil) Note 2)	20% or less of rated voltage		
	voltage	DC (Class B coil only)	2% or less of rated voltage		
	Coil insulation	type	Class B, Class H		

Note 1) Electrical entry: Grommet with surge voltage suppressor (GS) has a rating of IP40. Note 2) For the AC (Class B coil) of the VXD2130, built-in full-wave rectifier type is only applicable.

Solenoid Coil Specifications

Normally Closed (N.C.)

DC Specification

Model	Power consumption (W)	Temperature rise (C°) Note)
VXD2130	5.5	50
VXD2140/2150	4.5	45
VXD2260/2270	7	45
VXD2380/2390	10.5	60

Note) The values at ambient temperature of 20°C and when the rated voltage is applied.

AC Specification (Class B coil, Built-in full-wave rectifier type)

Model	Apparent power (VA)*	Temperature rise (C°) Note)
VXD21	7	55
VXD22	9.5	60
VXD23	12	65

* There is no difference in apparent power due to the inrush, energization, or frequency of the power, since the AC (Class B coil, Built-in full-wave rectifier type) uses a rectifying circuit.

Note) The values at ambient temperature of 20°C and when the rated voltage is applied.

AC Specification

Model		Apparent p	Temperature	
woder	Frequency (Hz)	Inrush	Energized	rise (C°) Note)
VXD21	50	19	10	50
VADZI	60	16	8	45
VXD22	50	43	20	65
VADZZ	60	35	17	60
VXD23	50	62	32	65
VAD23	60	52	27	60

Note) The values at ambient temperature of 20°C and when the rated voltage is applied.

Normally Open (N.O.) DC Specification

Model	Power consumption (W)	Temperature rise (C°) Note		
VXD2142/2152	4.5	45		
VXD2262/2272	7	45		
VXD2382/2392	10.5	60		

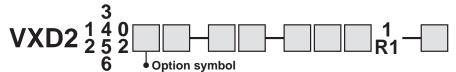
Note) The values at ambient temperature of 20°C and when the rated voltage is applied.

AC Specification (Class B coil, Built-in full-wave rectifier type)

Model	Apparent power (VA)*	Temperature rise (C°) $^{\text{Note})}$
VXD21	7	55
VXD22	9.5	60
VXD23	12	65

* There is no difference in apparent power due to the inrush, energization, or frequency of the power, since the AC (Class B coil, Built-in full-wave rectifier type) uses a rectifying circuit.

Note) The values at ambient temperature of 20°C and when the rated voltage is applied.


AC Specification

Model		Apparent p	Temperature	
widder	Frequency (Hz)	Inrush	Energized	rise (C°) Note)
VXD21	50	22	11	55
VADZI	60	18	8	50
VXD22	50	46	20	65
VADZZ	60	38	18	60
VXD23	50	64	32	65
VAD23	60	54	27	60

Note) The values at ambient temperature of 20°C and when the rated voltage is applied.

Applicable Fluid Check List

All Options (8A to 25A)

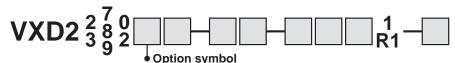
•							
Fluid and application	Option symbol	Seal material	Body/Shading coil material Note 6)	Push rod (N.O. only) material Note 5)	Coil insulation type Note 3)	Note	Air
Air	Nil	NBR	Brass (C37)/-		В	Select the built-in full-wave	For
	G	NBR	Stainless steel/-		D	rectifier type for the AC spec.	<u> </u>
Water	Nil	NBR	Brass (C37)/Cu		В		
Water	G		Stainless steel/Ag		В		er
Heated water	E	EPDM	Brass (C37)/Cu		H B H		Water
	Р	EPDIVI	Stainless steel/Ag				<u> </u>
	A		Brass (C37)/Cu	PPS			For
Oil Note 2)	Н	EKM	Stainless steel/Ag	FFO			
	D	FKM	Brass (C37)/Cu				
	N		Stainless steel/Ag		П		Ö
High corrosive spec., Oil-free	Note 1)	FKM	Stainless steel/Ag		В		For
Copper-free, Fluoro-free Note 4)	J	EPDM	Stainless steel/Ag		В		Ш.
Copper-free, Pluoio-free	Р		Stainless steel/Ag		Н		
Other combinations	В	EPDM	Brass (C37)/Cu		В		

Note 1) "L" option is for non-lube treatment.

Note 2) The dynamic viscosity of the fluid must not exceed 50 mm²/s.

The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.

Select the DC spec. or AC spec. built-in full-wave rectifier type when the dynamic viscosity is higher than water or when the OFF response is prioritized. Note 3) Coil insulation type Class H: AC spec. only


Note 4) The nuts (non-wetted parts) are nickel-plated on the C37 material.

Note 5) N.O. for VXD2130 is not available.

Note 6) There is no shading coil attached to the DC spec. or AC spec built-in full-wave rectifier type.

* Please contact SMC when fluids other than above are used.

All Options (32A to 50A)

Fluid and application	Option symbol	Seal material	Body/Shading coil material Note 6)	Push rod (N.O. only) material	Coil insulation type Note 4)	Note
Air	Nil	NBR	Brass (C37)/-		В	Select the built-in full-wave rectifier type for the AC spec.
Water	Nil	NBR	Brass (C37)/Cu	PPS	В	
Heated water Note 4)	E	EPDM	Brass (C37)/Cu		Н	
Oil Note 3)	A FKM		Brass (C37)/Cu		В	
	D	FT\IVI	Brass (C37)/Cu		Н	
Other combination	В	EPDM	Brass (C37)/Cu		В	

Note 1) "L" option is for non-lube treatment.

Note 2) The highest operating temperature of 32A to 50A is 80°C.

Note 3) The dynamic viscosity of the fluid must not exceed 50 mm²/s.

The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.

Select the DC spec. or AC spec built-in full-wave rectifier type when the dynamic viscosity is higher than water or when the OFF response is prioritized. Note 5) Coil insulation type Class H: AC spec. only

Note 6) There is no shading coil attached to the DC spec. or AC spec built-in full-wave rectifier type.

* Please contact SMC when fluids other than above are used.

3

Specifications

Construction

Dimensions

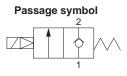
Series VXD21/22/23

For Air

- \land When the fluid is air. -

Please select the built-in full wave rectifier type when the fluid is air.

The special construction of the armature reduces abrasion, re-


Best suited for medical equipment, low-noise environments,

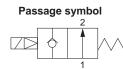
- sulting in a longer service life. • Reduced buzz noise
- (Inert gas)

.

Model/Valve Specifications

Normally closed (N.C.)

etc.


Port s		ort size	Orifice size	Model	Min. operating pressure		ing pressure ial (MPa)	Flow	character	istics	Max. system pressure	Weight
			(mmø) differ	differential (MPa)	AC	DC	С	b	Cv	(MPa) (g)	(g)	
		1/4 (8A)	10	VXD2130-02	0.00	0.9	0.7	8.5		2.0	-	400
			10	VXD2130-03				9.2	0.35	2.4		420
	Thread (Nominal)		15	VXD2140-03		1.0	1.0	18.0		5.0		670
	size)		10	VXD2130-04	0.02	0.9	0.7	9.2		2.4	1.5	500
	0120)	1/2 (15A)	15	VXD2140-04		1.0	1.0	20.0		5.5		670
		3/4 (20A)	20	VXD2150-06		1.0	1.0	38.0	0.30 9.5		1150	

Po	ort size	Orifice size (mmø)	Model	Min. operating pressure differential (MPa)	Max. operating pressure differential (MPa) AC, DC	Flow characteristics Effective area (mm ²)	Max. system pressure (MPa)	Note) Weight (g)
Thread (Nominal size)	1 (25A)	25	VXD2260-10	0.02		225		1650
	32A	35	VXD2270-32		1.0	415		5400
Flange	Flange 40A 40		VXD2380-40	0.03	0.03	560 1.5		6800
	50A	50 VXD2390-]		880]	8400

Note) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.

• Refer to "Glossary of Terms" for details on the max. operating pressure differential and the max. system pressure.

Normally open (N.O.)

Port size		Orifice size (mmø)	Model	Min. operating pressure	Max. operating pressure differential (MPa)	Flow	character	istics	Max. system pressure	Note) Weight
		(11119)		differential (MPa)	AC, DC	С	b	Cv	(MPa)	(g)
Thread	3/8 (10A)	15	VXD2142-03			18.0	0.35	5.0	1.5	690
(Nominal	1/2 (15A)	15	VXD2142-04	0.02	0.7	20.0	0.35	5.5		090
size)	3/4 (20A)	20	VXD2152-06			38.0	0.30	9.5		1170

Po	ort size	Orifice size (mmø)	Model	Min. operating pressure differential (MPa)	Max. operating pressure differential (MPa) AC, DC	Flow characteristics Effective area (mm ²)	Max. system pressure (MPa)	Note) Weight (g)
Thread (Nominal size)	1 (25A)	25	VXD2262-10	0.02		225		1690
	32A	35	VXD2272-32		0.7	415	4.5	5400
Flange	40A	40	40 VXD2382-40		0.7	560 1.5		6800
	50A	50	VXD2392-50			880		8400

Note) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.

• Refer to "Glossary of Terms" for details on the max. operating pressure differential and the max. system pressure.

Ambient and Fluid Temperature

Power source	Fluid temperature (°C) Solenoid valve option symbol Nil, G	Ambient temperature (°C)
AC	-10 Note) to 60	-10 to 60
DC	-10 to 60	-101060

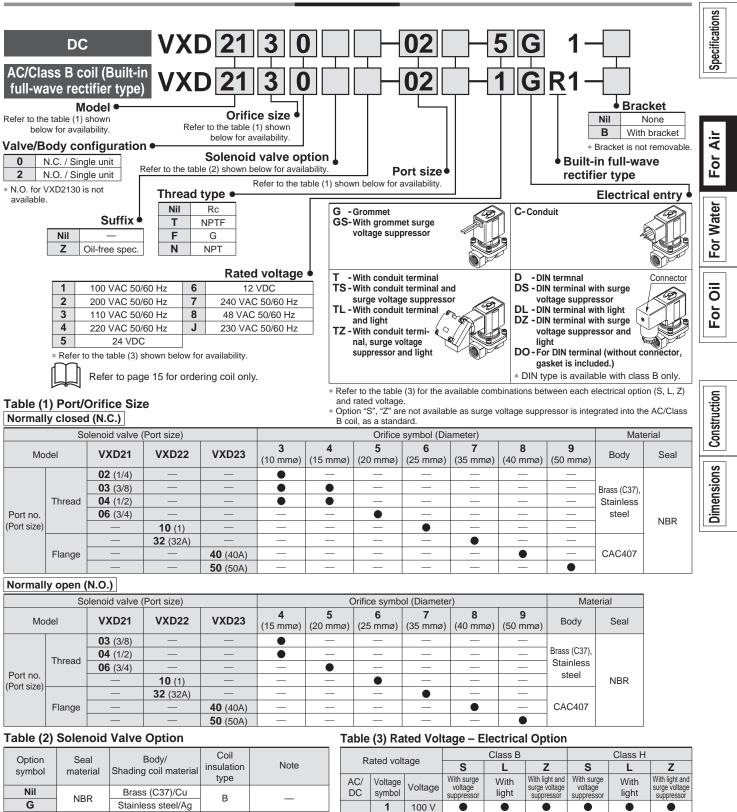
Note) Dew point temperature: -10°C or less

Valve Leakage Rate

Internal Leakage

O a star stariat	Leakage	rate (Air)
Seal material	1/4 to 1	32A to 50A
NBR, FKM	2 cm ³ /min or less	10 cm ³ /min or less

External Leakage


Cool motorial	Leakage	rate (Air)
Seal material	1/4 to 1	32A to 50A
NBR, FKM	1 cm ³ /min or less	1 cm ³ /min or less

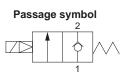
CAT.ES70-29 B 2006-7

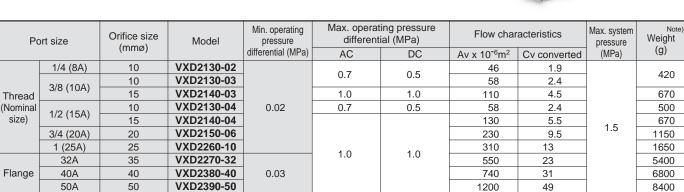
For Air

How to Order

2 200 V 3 110 V • • AC • • • 4 220 V 7 240 V 8 48 V • J 230 V 5 24 V • DC spec. is not available. DC 6 12 V

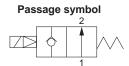
Note) Option "S", "Z" are not available as surge voltage suppressor is integrated into the AC/Class B coil, as a standard.




Series VXD21/22/23

For Water

Model/Valve Specifications


Normally closed (N.C.)

Note) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively. • Refer to "Glossary of Terms" for details on the max. operating pressure differential and the max. system pressure.

Normally open (N.O.)

Port size		Orifice size	Model	Min. operating Max. operating pressure differential (MPa)		Flow char	acteristics	Max. system pressure	Note) Weight
		(mmø)		differential (MPa)	AC, DC	Av x 10 ⁻⁶ m ² Cv converted		(MPa)	(g)
	3/8 (10A)	15	VXD2142-03		0.7	110	4.5		690
Thread (Nominal	1/2 (15A)	15	VXD2142-04	0.02		130	5.5		090
size)	3/4 (20A)	20	VXD2152-06			230	9.5		1170
5120)	1 (25A)	25	VXD2262-10			310	13	1.5	1690
	32A	35	VXD2272-32			550	23		5400
Flange	40A	40	VXD2382-40	0.03	0.03	740	31] [6800
	50A	50	VXD2392-50			1200	49		8400

Note) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively. • Refer to "Glossary of Terms" for details on the max. operating pressure differential and the max. system pressure.

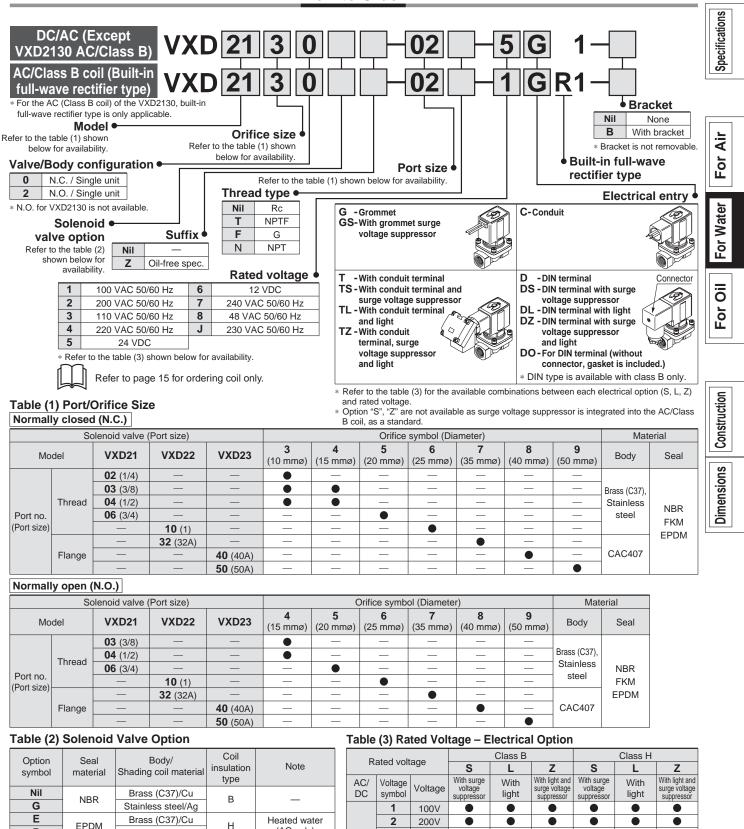
Ambient and Fluid Temperature

	Fluid tempe	erature (°C)	Ambient	
Power source	Solenoid valve	temperature		
	Nil, G, L	E, P	(°C)	
AC	1 to 60	1 to 99	-10 to 60	
DC	1 10 60			

Note) With no freezing

Valve Leakage Rate

Internal Leakage


Seal material	Leakage ra	ate (Water)
Searmaterial	1/4 to 1	32A to 50A
NBR, FKM, EPDM	0.2 cm ³ /min or less	1 cm ³ /min or less

External Leakage

Seal material	Leakage ra	ate (Water)
Seal material	1/4 to 1	32A to 50A
NBR, FKM, EPDM	0.1 cm ³ /min or less	0.1 cm ³ /min or less

How to Order

(AC only)

High corrosive,

Oil-free

В

3

4

7

8

J

5

6

AC

DC

SMC

110V

220V

240V

48V

230V

24V

12V

AC/Class B coil, as a standard

•

•

•

•

•

Note) Option "S", "Z" are not available as surge voltage suppressor is integrated into the

•

EPDM

FKM

Stainless steel/Ag

Stainless steel/Ag

Ρ

L

•

•

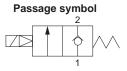
DC spec, is not available.

CAT.ES70-29 B 2006-7

Series VXD21/22/23

ightarrow When the fluid is oil. —

The dynamic viscosity of the fluid must not exceed 50 $\mbox{mm}^2\mbox{/s}.$

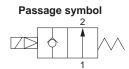

The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.

Select the DC spec. or AC spec. built-in full-wave rectifier type when the dynamic viscosity is higher than water or when the OFF response is prioritized.

For Oil

Model/Valve Specifications

Normally closed (N.C.)



Port size		Orifice size	Model	Min. operating pressure Max. operating pressure Iodel pressure differential (MPa)		Flow characteristics		Max. system pressure	Note) Weight	
		(mmø)		differential (MPa)	AC	DC	Av x 10 ⁻⁶ m ²	Cv converted	(MPa)	(g)
	1/4 (8A)	10	VXD2130-02		0.5	0.4	46	1.9		400
	2/0 (404)	10	VXD2130-03		0.5		58	2.4		420
Thread 3/8	3/8 (10A)	15	VXD2140-03] [0.7	0.7	110	4.5		670
(Nominal	4/0 (454)	10	VXD2130-04	0.02	0.5	0.4	58	2.4		500
size)	1/2 (15A)	15	VXD2140-04] [130	5.5	4.5	670
	3/4 (20A)	20	VXD2150-06				230	9.5	1.5	1150
	1 (25A)	25	VXD2260-10		0.7	0.7	310	13		1650
	32A	35	VXD2270-32		0.7	0.7	550	23	1	5400
Flange	40A	40	VXD2380-40	0.03			740	31] [6800
	50A	50	VXD2390-50				1200	49		8400

Note) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.

• Refer to "Glossary of Terms" for details on the max. operating pressure differential and the max. system pressure.

Normally open (N.O.)

Port size		Orifice size (mmø) Model		IVIODEI DIESSUIE		Flow characteristics		Max. system pressure	_{Note)} Weight
		(11111/2)		differential (MPa)	AC, DC	Av x 10 ⁻⁶ m ²	Cv converted	(MPa)	(g)
Thursday	3/8 (10A)	15	VXD2142-03		0.6	110	4.5	1.5	690
Thread (Nominal	1/2 (15A)	15	VXD2142-04	0.02		130	5.5		690
size)	3/4 (20A)	20	VXD2152-06			230	9.5		1170
0120)	1 (25A)	25	VXD2262-10			310	13		1690
	32A	35	VXD2272-32			550	23		5400
Flange	40A	40	VXD2382-40	0.03	-	740	31	-	6800
	50A	50	VXD2392-50			1200	49		8400

SMC

Note) Weight of grommet type. Add 10 g for conduit, 30 g for DIN terminal, and 60 g for conduit terminal type respectively.

• Refer to "Glossary of Terms" for details on the max. operating pressure differential and the max. system pressure.

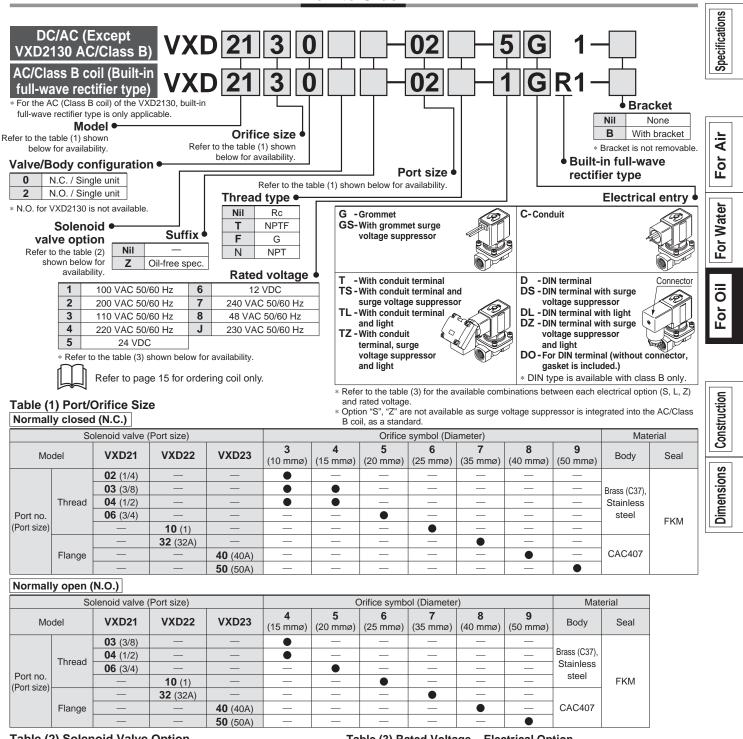
Ambient and Fluid Temperature

	Fluid tempe		Ambient
Power source	Solenoid valve	temperature	
	Α, Η	D, N	(°C)
AC	–5 to 60	-5 to 100	-10 to 60
DC	-5 10 60		-10 10 60

Note) Dynamic viscosity: 50 mm²/s or less

Valve Leakage Rate

Internal Leakage


Seal material	Leakage	rate (Oil)
Searmaterial	1/4 to 1	32A to 50A
FKM	0.2 cm ³ /min or less	1 cm ³ /min or less

External Leakage

Seal material	Leakage rate (Oil)									
Seal material	1/4 to 1	32A to 50A								
FKM	0.1 cm ³ /min or less	0.1 cm ³ /min or less								

For Oil

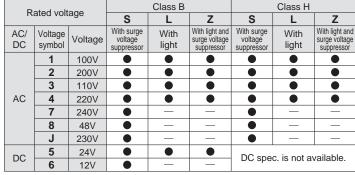
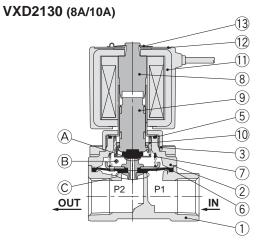
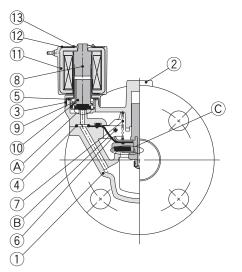

How to Order

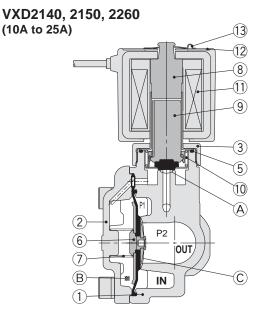
Table (2) Solenoid Valve Option

Option symbol	Seal material	Body/ Shading coil material	Coil insulation type
Α		Brass (C37)/Cu	D
Н	FKM	Stainless steel/Ag	D
D	FKIVI	Brass (C37)/Cu	
Ν		Stainless steel/Ag	п

Table (3) Rated Voltage – Electrical Option


Note) Option "S", "Z" are not available as surge voltage suppressor is integrated into the AC/Class B coil, as a standard.

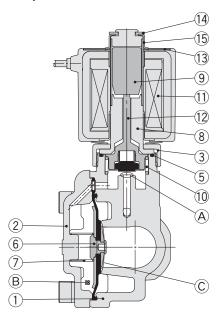

Construction

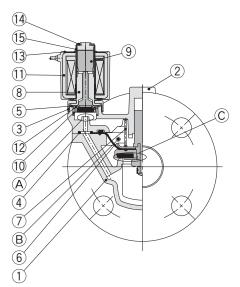

Normally closed (N.C.)

Body material: Brass (C37) (32A or larger: CAC407), Stainless steel (32A or larger: not available)

VXD2270, 2380, 2390 (32A to 50A)

Operation


<Valve opened> When the coil ① is energized, the armature assembly ③ is attracted into the core of the tube assembly ③ and the pilot valve ④ opens. Then the pressure in the pressure action chamber B falls to open the main valve C. **<Valve closed>** When the coil ① is not energized, the pilot valve ④ is closed and the pressure in the pressure action chamber B rises and the main valve C closes.


Component Parts

No.	Description	Size		Material					
INO.	Description	SIZE	Standard	Option					
1	Pody	8A to 25A	Brass (C37)	Stainless steel					
1	воау	approximation approxim	CAC407						
2	Ponnot	8A to 25A	Brass (C37)	Stainless steel					
2	Bonnet	32A to 50A		CAC407					
3	Nut	8A to 50A	Brass (C37)	Brass (C37), Ni plated					
4	O-ring	32A to 50A	NBR	FKM, EPDM					
5	O-ring	8A to 50A	NBR	FKM, EPDM					
6	Dianhragm accombly	8A to 25A	Stainless steel, NBR	Stainless steel, FKM / Stainless steel, EPDM					
0	Diapitragiti assettibiy	32A to 50A	Stainless steel, Brass (C37), NBR	Stainless steel, FKM, EPDM					
7	Valve spring	8A to 50A	s	Stainless steel					
8	Tube accombly	8A to 25A		Stainless steel, Ag					
0	Tube assembly	32A to 50A	Stainiess steel, Cu	—					
9	Armature assembly	8A to 50A	Stainless steel, PPS, NBR	Stainless steel, PPS, FKM Stainless steel, EPDM					
10	Return spring	8A to 50A	s	Stainless steel					
11	Solenoid coil	8A to 50A	Class B molded	Class H molded					
12	Name plate	8A to 50A	Aluminum						
13	Clip	8A to 50A		SK					
1.0									

Normally open (N.O.) Body material: Brass (C37) (32A or larger: CAC407), Stainless steel (32A or larger: not available) VXD2142, 2152, 2262 (10A to 25A) VXD2272, 2382, 2392 (32A to 50A)

Specifications

Air

For

For Water

For Oil

Construction

Dimensions

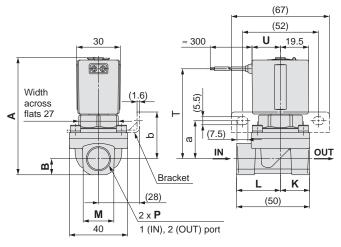
Operation

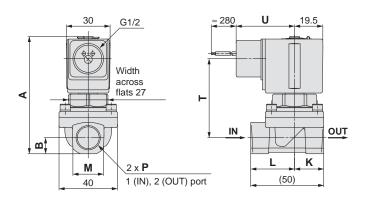
SMC

Valve opened> When the coil ① is energized, the opened pilot (A) closes, the pressure in pressure action chamber (B) rises and the main valve (C) closes. **Valve closed>** When the coil ① is not energized, the closed pilot valve (A) opens, the pressure in pressure action chamber (B) drops and the main valve (C) opens.

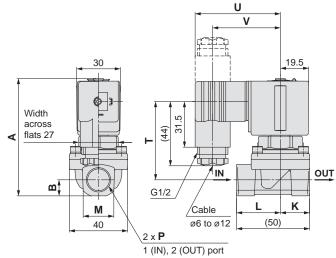
Component Parts

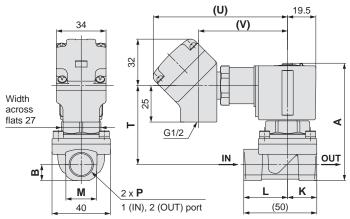
No.	Description	Size		Material					
INO.	Description	Size	Standard	Option					
1	Bady	10A to 25A	Brass (C37)	Stainless steel					
1	Body	32A to 50A		CAC407					
2	Bonnet	10A to 25A	Brass (C37)	Stainless steel					
2	Donnet	32A to 50A		CAC407					
3	Nut	10A to 25A	Brass (C37)	Brass (C37), Ni plated					
4	O-ring	32A to 50A	NBR	FKM, EPDM					
5	O-ring	10A to 50A	NBR	FKM, EPDM					
6	Diaphragm assembly	10A to 25A	Stainless steel, NBR	Stainless steel, FKM / Stainless steel, EPE					
0	Diaphragin assembly	32A to 50A	Stainless steel, NBR	Stainless steel, FKM, EPDM					
7	Valve spring	10A to 25A		Stainless steel					
8	Tube assembl	10A to 25A	Stainless steel, Cu	Stainless steel, Ag					
0	Tube assembl	32A to 50A	Stamless steel, Cu	—					
9	Armature assembly	10A to 50A		Stainless steel					
10	Return spring	10A to 50A		Stainless steel					
11	Solenoid coil	10A to 50A	Class B molded	Class H molded					
12	Push rod assembly	10A to 50A	NBR, PPS, Stainless steel	FKM, EPDM, Stainless steel					
13	Name plate	10A to 50A		Aluminum					
14	Clip	10A to 50A		SK					
15	Cover	10A to 50A		Stainless steel					

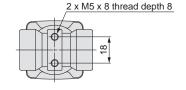

The materials in parentheses are the seal materials.


Dimensions: Single Unit/Body Material: Brass (C37), Stainless Steel

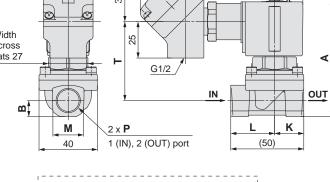
Normally closed (N.C.): VXD2130


Grommet: G

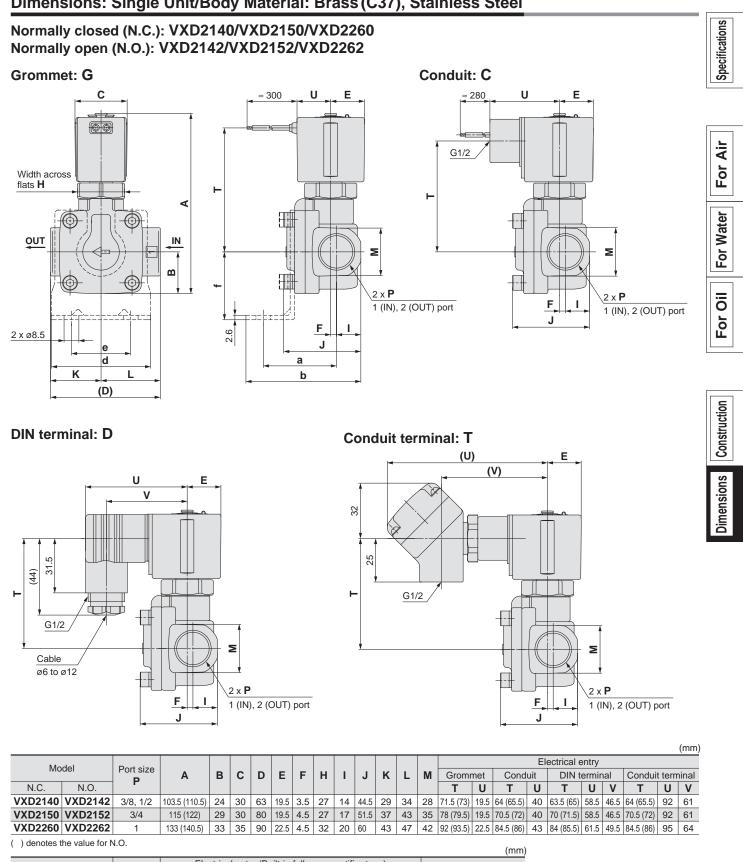

Conduit: C


DIN terminal: D

Conduit terminal: T



VXD2130 -04 - 0 Note) A thread is drilled on the bottom of the body of the VXD2130 with port size 04 (1/2).

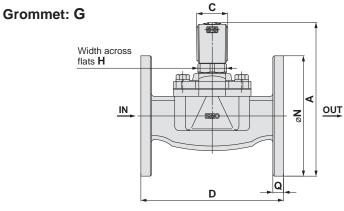


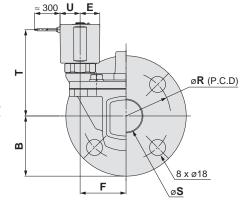
																(mm)
Model	Dortoizo										Electric	al entry	r			
IVIOUEI	Port size	Α	В	ĸ	L	М	Gror	nmet	Con	duit	DI	N termi	nal	Cond	duit terr	ninal
N.C.	F						Т	U	Т	U	Т	U	V	Т	U	V
VXD2130	1/4, 3/8	80.5	11	20	30	22	62	19.5	54.5	40	54	58.5	46.5	54.5	92	61
VAD2130	1/2	86	14.5	24	26	28	64	19.5	56.5	40	56	58.5	46.5	56.5	92	61

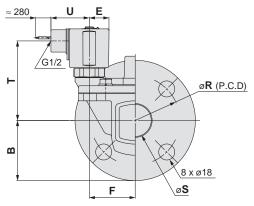
													(mm)		
Madal	Model Port size Electrical entry (Built-in full-wave rectifier type)														
woder	Port size	Gror	nmet	Cor	nduit	DI	N termi	nal	Con	duit terr	ninal	mou	nting		
N.C.	F	Т	U	Т	U	Т	U	V	Т	U	V	а	b		
VXD2130	1/4, 3/8	58	30	53	48.5	54	65.5	53.5	53	100.5	69.5	26	32		
VADZISU	1/2	60	30	55	48.5	56	65.5	53.5	55	100.5	69.5	28	34		
12									СЛЛ	<u> </u>					

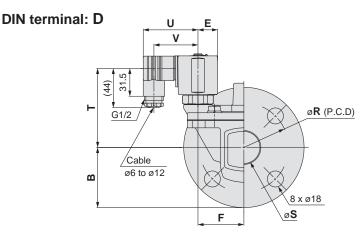
Dimensions: Single Unit/Body Material: Brass (C37), Stainless Steel

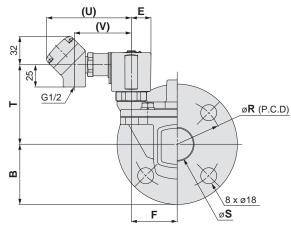
Madal		Dent elere			Bracket mounting													
viodei		Port size	Grommet		Conduit		DIN terminal		nal	Condui	t term	ninal	Bracket mounting					
	N.O.	г	Т	U	Т	U	Т	U	V	Т	U	V	а	b	d	е	f	
40 VX	(D2142	3/8, 1/2	67.5 (69)	30	62.5 (64)	48.5	63.5 (65)	65.5	53.5	62.5 (64)	100.5	69.5	42	66	57	34	39	
50 VX	(D2152	3/4	74 (75.5)	30	69 (70.5)	48.5	70 (71.5)	65.5	53.5	69 (70.5)	100.5	69.5	51	78	74	51	45.5	
60 VX	(D2262	1	88 (89.5)	33	83 (84.5)	51.5	84 (85.5)	68.5	56.5	83 (84.5)	103.5	72.5	56	86	81	58	49.5	
	40 V> 50 V>	50 VXD2152	N.O. P 40 VXD2142 3/8, 1/2	Model Port size Gromm N.O. P T 40 VXD2142 3/8, 1/2 67.5 (69) 50 VXD2152 3/4 74 (75.5)	Model Port size Grow+t N.O. P T U 40 VXD2142 3/8, 1/2 67.5 (69) 30 50 VXD2152 3/4 74 (75.5) 30	Model Port size Grommet Cond N.O. P T U T 40 VXD2142 3/8, 1/2 67.5 (69) 30 62.5 (64) 50 VXD2152 3/4 74 (75.5) 30 69 (70.5)	Model Port size Grommet Conduit N.O. P T U T U 40 VXD2142 3/8, 1/2 67.5 (69) 30 62.5 (64) 48.5 50 VXD2152 3/4 74 (75.5) 30 69 (70.5) 48.5	Model Port size Grommet Conduit DIN tr N.O. T U T U T 40 VXD2142 3/8, 1/2 67.5 (69) 30 62.5 (64) 48.5 63.5 (65) 50 VXD2152 3/4 74 (75.5) 30 69 (70.5) 48.5 70 (71.5)	Model Port size Grommet Conduit DIN termin N.O. P T U T U T U 40 VXD2142 3/8, 1/2 67.5 (69) 30 62.5 (64) 48.5 63.5 (65) 65.5 50 VXD2152 3/4 74 (75.5) 30 69 (70.5) 48.5 70 (71.5) 65.5	Model Port size Grommet Conduit DIN terminal N.O. T U T U T V V 40 VXD2142 3/8, 1/2 67.5 (69) 30 62.5 (64) 48.5 63.5 (65) 65.5 53.5 50 VXD2152 3/4 74 (75.5) 30 69 (70.5) 48.5 70 (71.5) 65.5 53.5	Model Port size Grommet Conduit DIN terminal Conduit N.O. T U T U T U T V T 40 VXD2142 3/8, 1/2 67.5 (69) 30 62.5 (64) 48.5 63.5 (65) 65.5 53.5 62.6 (64) 50 VXD2152 3/4 74 (75.5) 30 69 (70.5) 48.5 70 (71.5) 65.5 53.5 69 (70.5)	N.O. Grommet Conduit DIN terminal Conduit term N.O. T U	Model Port size Grommet Conduit DIN terminal Conduit terminal N.O. T U T U T U V	Model Port size Grommet Conduit DIN terminal Conduit terminal N.O. T U T U T U V T U V T U V a 40 VXD2142 3/8, 1/2 67.5 (69) 30 62.5 (64) 48.5 63.5 (65) 65.5 53.5 62.5 (64) 100.5 69.5 51 50 VXD2152 3/4 74 (75.5) 30 69 (70.5) 48.5 70 (71.5) 65.5 53.5 69 (70.5) 100.5 69.5 51	Model Port size Grommet Conduit DIN terminal Conduit terminal Bracks N.O. T U T U T U V T U V T U V T U V T U V T U V T U V T U V T U V T U V T U V T U V T U V T U V T U V T U V T U V T U K T U V T U V T U K T U V T U K T U V T U K T U K T T U V T U K T T U V T U	Model Port size Grommet Conduit DIN terminal Conduit terminal Bracket mo N.O. T U T U T U V T U V T U V A b d 40 VXD2142 3/8, 1/2 67.5 (69) 30 62.5 (64) 48.5 63.5 (65) 65.5 53.5 62.5 (64) 100.5 69.5 51 78 74 50 VXD2152 3/4 74 (75.5) 30 69 (70.5) 48.5 70 (71.5) 65.5 53.5 69 (70.5) 100.5 69.5 51 78 74	Model Port size Grommet Conduit DIN terminal Conduit terminal Bracket mountin N.O. T U T U T U T U V T U V a b d e 40 VXD2142 3/8, 1/2 67.5 (69) 30 62.5 (64) 48.5 63.5 (65) 65.5 53.5 62.6 (64) 100.5 69.5 42 66 57 34 50 VXD2152 3/4 74 (75.5) 30 69 (70.5) 48.5 70 (71.5) 65.5 53.5 69 (70.5) 100.5 69.5 51 78 74 51	


() denotes the value for N.O.




Dimensions: Single Unit/Body Material: Brass (C37), Stainless Steel


Normally closed (N.C.): VXD2270/VXD2380/VXD2390 Normally open (N.O.): VXD2272/VXD2382/VXD2392



Conduit: C

Conduit terminal: T

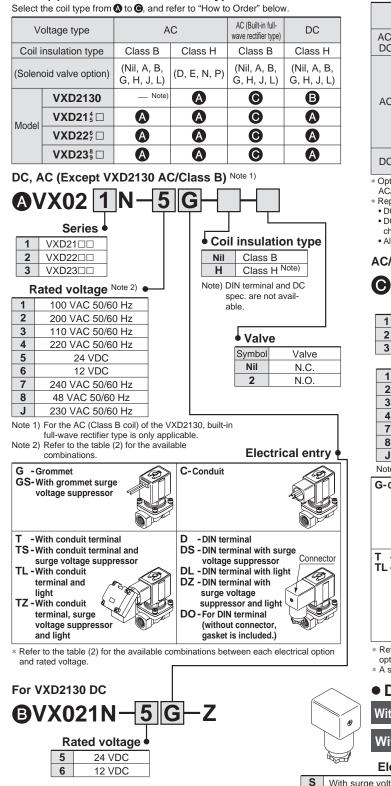
																							(mm)
M	odel	Appliaghla															El	ectrical en	try				
IV	ouei	Applicable flange	Α	В	С	D	Е	F	н	N	Q	R	S	Gromm	let	Condu	it	DIN te	ermina	al	Conduit	termi	inal
N.C.	N.O.	nange												Т	U	Т	U	Т	U	V	Т	U	V
VXD2270	VXD2272	32A	172.5 (180)	67.5	35	160	22.5	51.5	32	135	12	100	36	97 (98.5)	22.5	89.5 (91)	43	89 (90.5)	61.5	49.5	89.5 (91)	95	64
VXD2380	VXD2382	40A	185 (192.5)	70	40	170	25	54.5	36	140	14	105	42	107 (108.5)	25.5	99.5 (101)	46	99 (100.5)	64	52	99.5 (101)	98	67
VXD2390	VXD2392	50A	198 (205.5)	77.5	40	180	25	59	36	155	14	120	52	112.5 (114)	25.5	105 (106.5)	46	104.5 (106)	64	52	105 (106.5)	98	67

()	denotes	the	value	for	N.O
---	---	---------	-----	-------	-----	-----

() denotes t	() denotes the value for N.O. (n														
Ma	del	Annlinghis		Ele	ectrical ent	ry (B	uilt-in full-v	vave	rectif	ier type)					
IVIC	dei	Applicable flange	Gromm	et	Condu	ıit	DIN te	rmina	al	Conduit	termi	inal			
N.C.	N.O.	liange	Т	U	Т	U	Т	U	V	Т	U	V			
VXD2270	VXD2272	32A	93 (94.5)	33	88 (89.5)	51.5	89 (90.5)	68.5	56.5	88 (89.5)	103.5	72.5			
VXD2380	VXD2382	40A	103 (104.5)	36	98 (99.5)	54	99 (100.5)	71	59	98 (99.5)	106	75			
VXD2390	VXD2392	50A	108.5 (110)	36	103.5 (105)	54	104.5 (106)	71	59	103.5 (105)	106	75			

() denotes the value for N.O.

14



Pilot Operated 2 Port Solenoid Valve Series VXD21/22

Replacement Parts

Solenoid coil assembly part no.

Table (1) Model and Solenoid Coil Type

Specifications Table (2) Rated Voltage – Electrical Option Class F Class H Rated voltage Ζ S S L Ζ L With light and surge voltage With surg With light and surge voltage suppressor With surge With AC/ Voltage With Voltage voltage voltage DC symbol light light ppres 100 V 1 2 200 V • 0 110 V 3 Air AC 4 220 V For 7 240 V 8 48 V 230 V . 1 5 24 V For Water DC DC spec. is not available • 12 V 6 Option "S", "Z" are not available as surge voltage suppressor is integrated into the AC/Class B coil, as a standard. * Replacement of solenoid coils: • DC and AC coils cannot be interchanged in order to change the voltage. • DC and AC (built-in full-wave rectifier type) coils can be interchanged in order to change the voltage. lio • All DC coil voltages are interchangeable. • All AC coil voltages are interchangeable. AC/Class B (Built-in full-wave rectifier type) For **GVX02** 1 N GR Series Valve 1 VXD21 Symbol Valve VXD22 Nil N.C. 3 VXD23 Construction 2 N.O. Rated voltage Note) 1 100 VAC 50/60 Hz 2 200 VAC 50/60 Hz 3 110 VAC 50/60 Hz 4 220 VAC 50/60 Hz Dimensions 7 240 VAC 50/60 Hz 8 48 VAC 50/60 Hz 230 VAC 50/60 Hz J Note) Refer to the table (2) for the available combinations. Electrical entry G-Grommet C-Conduit -With conduit terminal - DIN terminal DL - DIN terminal with light TL - With conduit terminal Connecto and light DO - For DIN terminal (without connector gasket is included.) Refer to the table (2) for the available combinations between each electrical option and rated voltage. * A surge voltage suppressor is inegrated into the AC/Class B coil, as a standard. DIN connector part no. Without electrical option **GDM2A** With electrical option **GDM2A** Electrical option • With surge voltage suppressor Rated voltage With light 100 VAC, 110 VAC 1 With light/surge voltage suppressor 2 200 VAC, 220 VAC, 230 VAC, 240 VAC * Refer to the table (1) for the available com-5 24 VDC

For Air, Water, Oil

binations between each electrical option (S, L, Z) and rated voltage.

∂SMC

L

Ζ

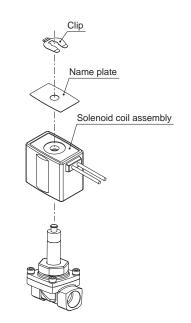
6

15

12 VDC

48 VAC

15



Replacement Parts

• Name plate part no.

- Clip part no. (For N.C.)
 For VXD21: VX021N-10
 For VXD22: VX022N-10
 For VXD23: VX023N-10
- Clip part no. (For N.O.)
 For VXD21: ETW-7
 For VXD22: ETW-8
 For VXD23: ETW-9

SMC

Solenoid Valve Flow Characteristics (How to indicate flow characteristics)

1. Indication of flow characteristics

The flow characteristics in equipment such as a solenoid valve, etc. are indicated in their specifications as shown in Table (1).

Table (1) Indication of Flow Characteristics

Corresponding equipment	Indication by international standard	Other indications	Conformed standard
Pneumatic equipment	<i>C</i> , <i>b</i>		ISO 6358: 1989 JIS B 8390: 2000
		S	JIS B 8390: 2000 Equipment: JIS B 8373, 8374, 8375, 8379, 8381
		Cv	ANSI/(NFPA)T3.21.3: 1990
Process fluid control equipment	Av		IEC60534-2-3: 1997 JIS B 2005: 1995
	—	Cv	Equipment: JIS B 8471, 8472, 8473

2. Pneumatic equipment

2.1 Indication according to the international standards

2.1 Indication according to the international standards			
(1) Conformed standard			
ISO 6358: 1989 : Pneumatic fluid power—Components using compressible fluids—			
Determination of flow-rate characteristics			
JIS B 8390: 2000 : Pneumatic fluid power—Components using compressible fluids—			
How to test flow-rate characteristics			
(2) Definition of flow characteristics			
The flow characteristics are indicated as a result of a comparison between sonic conductance C and critical pressure ratio b . Sonic conductance C : Value which divides the passing mass flow rate of an equipment in a choked flow condition by the product of the upstream absolute pressure and the density in a standard condition.			
Critical pressure ratio b : Pressure ratio (downstream pressure/upstream pressure) which will turn to a choked flow when the value is smaller than this ratio.			
Choked flow : The flow in which the upstream pressure is higher than the downstream pressure and where sonic speed in a certain part of an equipment is reached.			
Gaseous mass flow rate is in proportion to the upstream pressure and not dependent on the downstream pressure.			
Subsonic flow : Flow greater than the critical pressure ratio			
Standard condition : Air in a temperature state of 20°C, absolute pressure 0.1 MPa (= 100 kPa = 1 bar), relative humidity 65%.			
It is stipulated by adding the "(ANR)" after the unit depicting air volume. (standard reference atmosphere)			
Conformed standard: ISO 8778: 1990 Pneumatic fluid power—Standard reference			
atmosphere, JIS B 8393: 2000: Pneumatic fluid power—Standard reference atmosphere			
(3) Formula for flow rate			
It is described by the practical units as following.			
$\frac{P^2 + 0.1}{P^1 + 0.1} \le b$, choked flow			
$\frac{P_{2} + 0.1}{P_{1} + 0.1} \le b, \text{ choked flow}$ $Q = 600 \times C (P_{1} + 0.1) \sqrt{\frac{293}{273 + t}} \qquad (1)$ When			
When $P_2 + 0.1 > h$ subsonic flow			
P1 + 0.1			
$\frac{P_2 + 0.1}{P_1 + 0.1} > b, \text{ subsonic flow}$ $Q = 600 \times C (P_1 + 0.1) \sqrt{1 - \left[\frac{P_2 + 0.1}{P_1 + 0.1} - b\right]^2} \sqrt{\frac{293}{273 + t}} \dots (2)$			
Q : Air flow rate [dm ³ /min (ANR)], dm ³ (Cubic decimeter) of SI unit are also allowed to be described by ℓ (liter), 1 dm ³ = 1 ℓ			

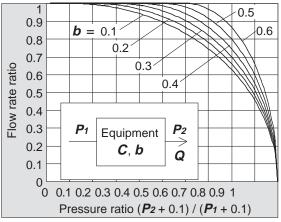
Q : Air flow rate [dm³/min (ANR)], dm³ (Cubic decimeter) of SI unit are also allowed to be described by ℓ (liter). 1 dm³ = 1 ℓ

C : Sonic conductance [dm³/(s·bar)]

- **b** : Critical pressure ratio [—]
- P1 : Upstream pressure [MPa]
- P2 : Downstream pressure [MPa]
- *t* : Temperature [°C]

Note) Formula of subsonic flow is the elliptic analogous curve.

Flow characteristics are shown in Graph (1) For details, please make use of SMC's "Energy Saving Program".


Example)

Obtain the air flow rate for $P_1 = 0.4$ [MPa], $P_2 = 0.3$ [MPa], t = 20 [°C] when a solenoid value is performed in C = 2 [dm³/(s·bar)] and b = 0.3.

According to formula 1, the maximum flow rate = $600 \times 2 \times (0.4 + 0.1) \times \sqrt{\frac{293}{273 + 20}} = 600 \text{ [dm³/min (ANR)]}$

Pressure ratio = $\frac{0.3 + 0.1}{0.4 + 0.1} = 0.8$

Based on Graph (1), it is going to be 0.7 if it is read by the pressure ratio as 0.8 and the flow ratio to be $\boldsymbol{b} = 0.3$. Hence, flow rate = Max. flow x flow ratio = 600 x 0.7 = 420 [dm³/min (ANR)]

Graph (1) Flow characteristics

(4) Test method

Attach a test equipment with the test circuit shown in Fig. (1) while maintaining the upstream pressure to a certain level which does not go below 0.3 MPa. Next, measure the maximum flow to be saturated in the first place, then measure this flow rate at 80%, 60%, 40%, 20% and the upstream and downstream pressure. And then, obtain the sonic conductance C from this maximum flow rate. Besides that, substitute each data of others for the subsonic flow formula to find b, then obtain the critical pressure ratio b from that average.

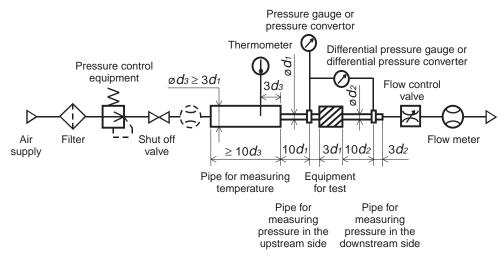


Fig. (1) Test circuit based on ISO 6358, JIS B 8390

2.2 Effective area S

(1) Conformed standard JIS B 8390: 2000: Pneumatic fluid power—Components using compressible fluids— Determination of flow rate characteristics Equipment standards: JIS B 8373: 2 port solenoid valve for pneumatics JIS B 8374: 3 port solenoid valve for pneumatics JIS B 8375: 4 port, 5 port solenoid valve for pneumatics JIS B 8379: Silencer for pneumatics JIS B 8381: Fittings of flexible joint for pneumatics (2) Definition of flow characteristics Effective area S: The cross-sectional area having an ideal throttle without friction deduced from the calculation of the pressure changes inside an air tank or without reduced flow when discharging the compressed air in a choked flow, from an equipment attached to the air tank. This is the same concept representing the "easy to run through" as sonic conductance C. (3) Formula for flow rate When $\frac{P_2 + 0.1}{P_1 + 0.1} \le 0.5$, choked flow $Q = 120 \times S(P_1 + 0.1) \sqrt{\frac{293}{273 + t}}$ (3) When $\frac{P_2 + 0.1}{P_1 + 0.1} > 0.5, \text{ subsonic flow}$ $Q = 240 \times S \sqrt{(P_2 + 0.1) (P_1 - P_2)} \sqrt{\frac{293}{273 + t}}$ (4) Conversion with sonic conductance C: Q : Air flow rate[dm³/min(ANR)], dm³ (cubic decimeter) of SI unit are also allowed to be described by ℓ (liter) 1 dm³ = 1 ℓ : Effective area [mm²] S P1 : Upstream pressure [MPa] P2 : Downstream pressure [MPa] : Temperature [°C] Note) Formula for subsonic flow (4) is only applicable when the critical pressure ratio \boldsymbol{b} is the unknown equipment. In the formula (2) by the sonic conductance C, it is the same formula as when b = 0.5. (4) Test method Attach a test equipment with the test circuit shown in Fig. (2) in order to discharge air into the atmosphere until the pressure

inside the air tank goes down to 0.25 MPa (0.2 MPa) from an air tank filled with the compressed air at a certain pressure level (0.5 MPa) which does not go below 0.6 MPa. At this time, measure the discharging time and the residual pressure inside the air tank which had been left until it turned to be the normal values to determine the effective area S, using the following formula. The volume of an air tank should be selected within the specified range by corresponding to the effective area of an equipment for test. In the case of JIS B 8373, 8374, 8375, 8379, 8381, the pressure values are in parentheses and the coefficient of the formula is 12.9.

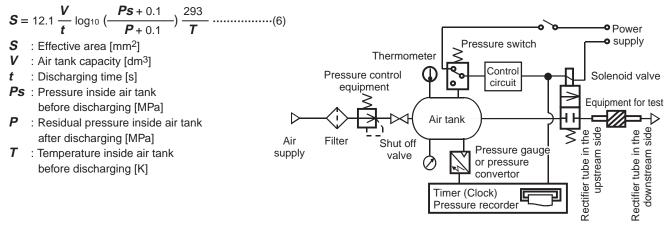


Fig. (2) Test circuit based on JIS B 8390

2.3 Flow coefficient Cv factor

The United States Standard ANSI/(NFPA)T3.21.3:1990: Pneumatic fluid power—Flow rating test procedure and reporting method for fixed orifice components

Defines the Cv factor of flow coefficient by the following formula which is based on the test conducted by the test circuit analogous to ISO 6358.

$$Cv = \frac{Q}{114.5 \sqrt{\frac{\Delta P (P_2 + P_a)}{P}}} \dots (7)$$

AP : Pressure drop between the static pressure tapping ports [bar]

- **P**₁ : Pressure of the upstream tapping port [bar gauge]
- **P2** : Pressure of the downstream tapping port [bar gauge]: $P_2 = P_1 \Delta P$
- **Q** : Flow rate [dm³/s standard condition]
- Pa : Atmospheric pressure [bar absolute]

T1 : Test conditions of the upstream absolute temperature [K]

is $< P1 + Pa = 6.5 \pm 0.2$ bar absolute, $T1 = 297 \pm 5K$, 0.07 bar $\le \Delta P \le 0.14$ bar.

This is the same concept as effective area A which ISO6358 stipulates as being applicable only when the pressure drop is smaller than the upstream pressure and the compression of air does not become a problem.

3. Process fluid control equipment

(1) Conformed standard

IEC60534-2-3: 1997: Industrial process control valves. Part 2: Flow capacity, Section Three-Test procedures JIS B 2005: 1995: Test method for the flow coefficient of a valve Equipment standards: JIS B 8471: Solenoid valve for water

JIS B 8471: Solenoid valve for water

JIS B 8473: Solenoid valve for fuel oil

(2) Definition of flow characteristics

Av factor: Value of the clean water flow rate represented by m³/s which runs through a valve (equipment for test) when the pressure difference is 1 Pa. It is calculated using the following formula.

$$\boldsymbol{A}\boldsymbol{v} = \boldsymbol{Q}_{\sqrt{\frac{\rho}{\Delta \boldsymbol{P}}}}....(8)$$

Av: Flow coefficient [m²]

Q : Flow rate [m³/s]

 ΔP : Pressure difference [Pa]

ρ : Density of fluid [kg/m³]

(3) Formula of flow rate

It is described by the practical units. Also, the flow characteristics are shown in Graph (2). In the case of liquid:

$$\boldsymbol{Q} = 1.9 \times 10^6 \boldsymbol{A} \boldsymbol{V}_{\sqrt{\frac{\Delta \boldsymbol{P}}{\boldsymbol{G}}}}.....(9)$$

Av : Flow coefficient [m²]

 ΔP : Pressure difference [MPa]

G : Relative density [water = 1]

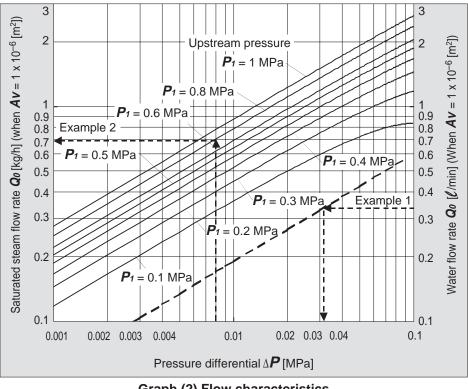
In the case of saturated aqueous vapor:

$$Q = 8.3 \times 10^6 Av \sqrt{\Delta P(P_2 + 0.1)}$$
(10)

Q : Flow rate [kg/h]

Av: Flow coefficient [m²]

- ΔP : Pressure difference [MPa]
- **P**₁ : Relative density [MPa]: $\Delta P = P_1 P_2$
- P2 : Relative density [MPa]


Conversion of flow coefficient:

 $Av = 28 \times 10^{-6} Kv = 24 \times 10^{-6} Cv$ (11) Here,

Kv factor: Value of the clean water flow rate represented by m³/h which runs through a valve at 5 to 40°C, when the pressure difference is 1 bar.

Cv factor (Reference values): Figures representing the flow rate of clean water by US gal/min which runs through a value at 60°F, when the pressure difference is 1 lbf/in² (psi).

Value is different from *Kv* and *Cv* factors for pneumatic purpose due to different test method.

Graph (2) Flow characteristics

Example 1)

Obtain the pressure difference when water 15 [ℓ /min] runs through a solenoid valve with an $Av = 45 \times 10^{-6} \text{ [m}^2\text{]}$. Since Qo = 15/45 = 0.33 [ℓ /min], according to Graph (2), if reading ΔP when Qo is 0.33, it will be 0.031 [MPa].

Example 2)

Obtain the saturated steam flow rate when $P_1 = 0.8$ [MPa], $\Delta P = 0.008$ [MPa] with a solenoid valve with an $Av = 1.5 \times 10^{-6}$ [m²]. According to Graph (2), if reading Q_0 when P_1 is 0.8 and ΔP is 0.008, it is 0.7 [kg/h]. Hence, the flow rate $Q = 0.7 \times 1.5 = 1.05$ [kg/h].

(4) Test method

Attach a test equipment with the test circuit shown in Fig. (3). Next, pour water at 5 to 40°C, then measure the flow rate with a pressure difference of 0.075 MPa. However, the pressure difference needs to be set with a large enough difference so that the Reynolds number does not go below a range of 4×10^4 .

By substituting the measurement results for formula (8) to figure out Av.

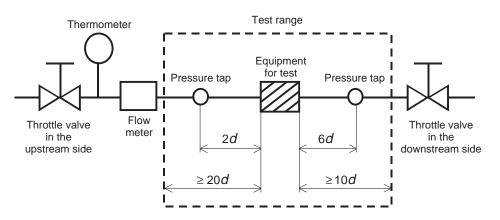
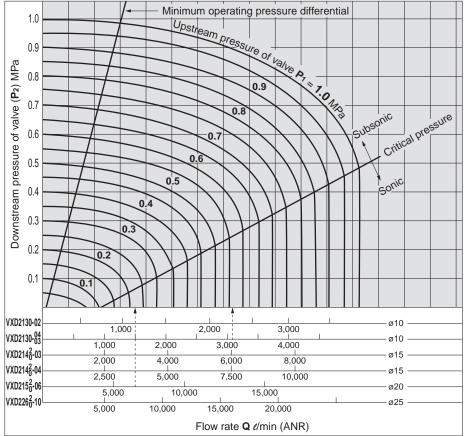
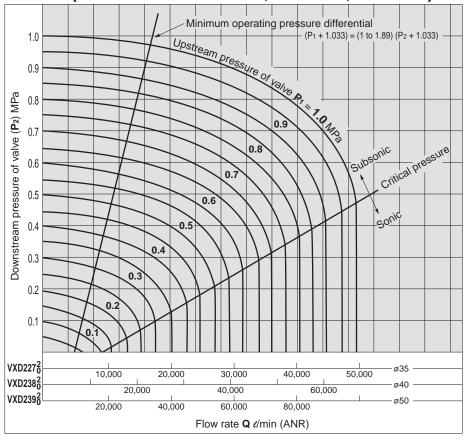



Fig. (3) Test circuit based on IEC60534-2-3, JIS B 2005

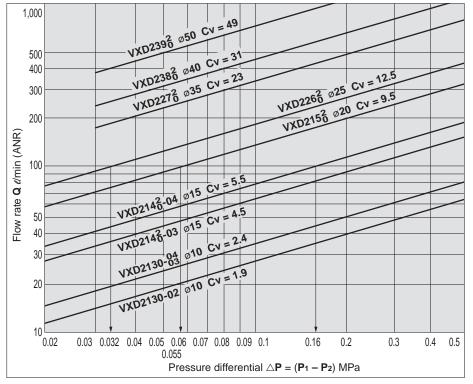
Flow Characteristics

Note) Use this graph as a guide. In the case of obtaining an accurate flow rate, refer to pages 17 through to 22.


For Air (Orifice size: ø10 mm, ø15 mm, ø20 mm, ø25 mm)

How to read the graph

The sonic range pressure to generate a flow rate of 6000 t/min (ANR) is $P_1 \approx 0.57$ MPa for a ø15 orifice (VXD214²₀-03) and $P_1 \approx 0.22$ MPa for a ø20 orifice (VXD215²₀-06).


For Air (Orifice size: ø35 mm, ø40 mm, ø50 mm)

Flow Characteristics

For Water

How to read the graph When a water flow of 100 *d*/min is generated, $\triangle P \approx 0.16$ MPa for a ø15 orifice (VXD214²₀-04), $\triangle P \approx 0.055$ MPa for a ø20 orifice (VXD215²₀), and $\triangle P \approx 0.032 \text{ MPa for a } \emptyset 25 \text{ orifice } (VXD226_0^2).$

Glossary of Terms

Pressure Terminology

1. Maximum operating pressure differential

The maximum pressure differential (the difference between the inlet and outlet pressure) which is allowed for operation, with the valve closed. When the outlet pressure is 0 MPa, this becomes the maximum operating pressure.

2. Minimum operating pressure differential

The minimum pressure differential (the difference between the inlet pressure and outlet pressure) required to keep the main valve fully opened.

3. Maximum system pressure

The maximum pressure that can be applied inside the pipelines (line pressure).

(The pressure differential of the solenoid valve portion must be less than the maximum operating pressure differential.)

4. Proof pressure

The pressure in which the valve must be withstood without a drop in performance after holding for one minute under prescribed pressure and returning to the operating pressure range. (value under the prescribed conditions)

Electrical Terminology

1. Apparent power (VA)

Volt-ampere is the product of voltage (V) and current (A). Power consumption (W): For AC, $W = V \cdot A \cdot \cos\theta$. For DC, $W = V \cdot A$.

(Note) $\cos\theta$ shows power factor. $\cos\theta = 0.6$

2. Surge voltage

A high voltage which is momentarily generated by shutting off the power in the shut-off area.

3. Degree of protection

A degree defined in the "JIS C 0920: Waterproof test of electric machinery/appliance and the degree of protection against the intrusion of solid foreign objects".

IP65: Dusttight, Low jetproof type

"Low jetproof type" means that no water intrudes inside an equipment that could hinder from operating normally by means of applying water for 3 minutes in the prescribed manner. Take appropriate protection measures, since a device is not usable in an environment where a droplet of water is splashed.

Others

1. Material

NBR: Nitrile rubber

FKM: Fluoro rubber – Trade names: Viton®, Dai-el®, etc.

EPDM: Ethylene propylene rubber

PTFE: Polytetrafluoroethylene resin – Trade names: Teflon[®], Polyflon[®], etc.

FFKM: Perfluoroelastomer

Trade names: Kalrez[®], Chemraz[®], etc.

2. Oil-free treatment

The degreasing and washing of wetted parts.

3. Passage symbol

In the JIS symbol ($\simeq \square + N$) IN and OUT are in a blocked condition (+), but actually in the case of reverse pressure (OUT>IN), there is a limit to the blocking.

($\boldsymbol{\varphi}$) is used to indicate that blocking of reverse pressure is not possible.