
Mechanically Jointed Rodless Cylinders

MY3 Series

Series Variations

are new additions Series Made to Order 16 20 25 32 40 50 63 Basic Shock Absorber MY3A short Soft Type No. type Centralized P.1413 Helical Insert Threads -X168 Basic piping MY3B standard *0*0*0 Holder Mounting Bracket Note) Standard type -X416, -X417 piping Slide Copper Free MY3M bearing P.1437 guide type

Shock Absorber Soft Type RJ Series Installed Cylinder (-XB22 spec.) added

- Soft stopping enabled at stroke end.
- Two types of shock absorbers are selectable according to operating environment.

SMC

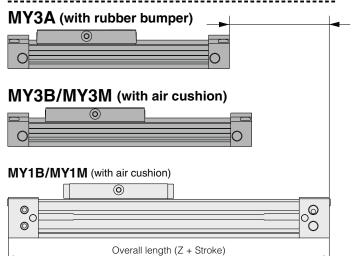
Note) Except the MY3A

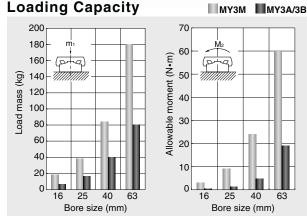
D--X□ Technical

1403 B

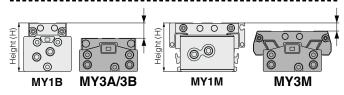
Best Pneumatics 2-1 Ver.6

High functionality with reduced height and length


Mechanically Jointed Rodless Cylinders



Work pieces can be loaded directly on the work table due to the integrated guide.

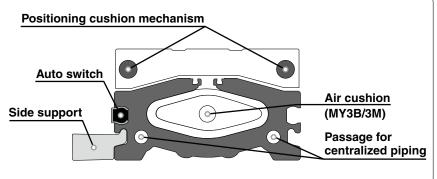

Overall length (Z) reduced by 140 mm at the maximum

Overall Length (Z) (mm)							
Series	ø 16	ø 20	ø 25	ø 32	ø 40	ø 50	ø 63
МҮЗА	110	128	150	193	240	274	320
MY3B	122	148	178	225	276	310	356
МҮЗМ	122	_	178	_	276	_	356
MY1B	100	000	000	000	340	400	
MY1M	160	200	220	280			460

Height (H) reduced by 36% at the maximum

Height (H)							(mm)
Series	ø 16	ø 20	ø 25	ø 32	ø 40	ø 50	ø 63
МҮ3А	27	32	37	45	54	67	84
MY3B	27	32	37	45	54	67	84
MY1B	37	46	54	68	84	94	116
МУЗМ	33	_	45	_	63	_	93
MY1M	40	_	54	_	84	_	130

Weight reduced by **55**% at the maximum


Weight							(kg)
Series	ø 16	ø 20	ø 25	ø 32	ø 40	ø 50	ø 63
MY3A	0.33	0.57	0.84	1.61	2.81	4.52	7.58
MY3B	0.34	0.67	0.93	1.75	2.81	4.90	8.16
MY1B	0.73	1.26	1.57	3.01	4.41	8.66	14.5
MY3M	0.45	_	1.20	_	3.65	_	9.99
MY1M	0.91	_	2.12	_	7.00	_	18.8

* At 100 mm stroke

The uniquely designed piston shape enables reduction of the height and length as well as practical arrangement of the common piping passages, cushion mechanism and positioning mechanism. This has achieved drastic miniaturization and weight reduction.

D-□

Technical Data

MY3 Series

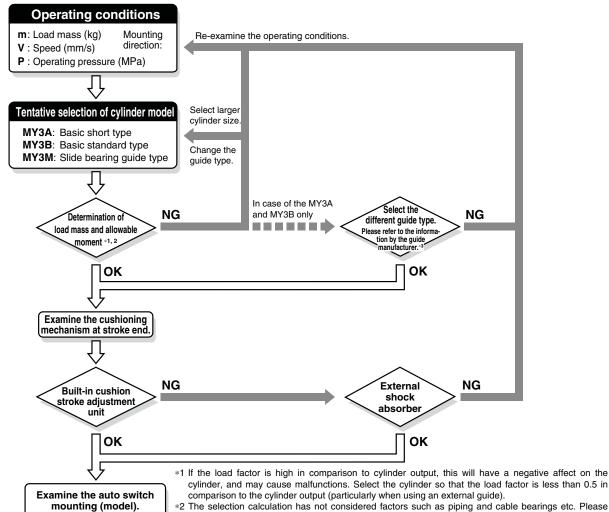
Model Selection

The following are steps for selecting the MY3 series which is best suited to your application.

Guideline for Tentative Model Selection

Series	Covins		uideline for tentati	Note		
Series	Туре	Stroke accuracy	Use of external guide	Direct loaded	Table accuracy	Note
МҮЗА	Basic short type	Δ	0	Δ	Δ	Generally combined with a separate guide making it, by length, more compact.
МҮ3В	Basic standard type	0	0	0	Δ	Generally combined with a separate guide, when stroke accuracy is required.
МҮЗМ	Slide bearing guide type	0	×	0	0	Mounting a work piece directly on the product, when stroke accuracy is required.

Most suitable Suitable △ Usable × Not recommended


Model

selected

Selection Flow Chart

When an external guide is used, the selection confirmation of the guide capacity should follow the selection procedure of the external guide.

The MY3 series allow direct load application within the allowable range for the built-in guide. The payload in this case will vary depending on the driving speed and the mounting orientation of the cylinder. Please refer to the flow below and confirm the selection. (For more detailed description of the selection flow, please refer to the operation manual.)

- cylinder, and may cause malfunctions. Select the cylinder so that the load factor is less than 0.5 in
- 2 The selection calculation has not considered factors such as piping and cable bearings etc. Please calculate and select a load factor that considers external forces such as piping and cable bearing.
- *3 When using an external cushioning unit, we recommend installing a suitable unit near the load's center of gravity

It is possible to select all models of mechanically jointed rodless cylinder (the MY3 series) according to the procedure indicated above.

Refer to the separate operation manual for further explanation, and please consult with SMC

Note 1) The table accuracy means the amount of table deflection when a moment is applied.

Note 2) Travelling parallelism is not guaranteed for this cylinder. Please consult with SMC if the travelling parallelism or stroke intermediate position needs to be precise.

Model Selection MY3 Series

⚠ Warning

Reduction circuits or shock absorbers may be necessary.

If the driven object is fast, or the weight is large, the cylinder cushion alone may not be able to absorb the impact. In this case, install a reduction circuit before the cushion, or install an external shock absorber to reduce the impact. Please check the machine's rigidity as well.

Maximum operating speed

* External shock absorbers must meet the characteristics listed on page 1423. Cylinders may be damaged if shock absorbers that do not have the recommended characteristics are used.

			ged it shock absorbers that do not have the recommended characteristics are used.
How to mount a load	Stroke positioning	Shock absorber	Maximum operating speed (mm/s) 500 1000 1500
		Rubber bumper	МУЗА
	Cylinder stroke end	Air cushion	музв
Direct loaded		All Gustion	MY3M
	Stroke adjustment unit (Option: L, H unit)	Shock absorber	MY3M Note 5)
	External stopper	External shock	MY3A MY3B Note 3)
		absorber Note 2)	MY3M Note 3)
	Cylinder stroke end	Rubber bumper	MY3A
Use of external guide Note 1)	Cymider Suoke end	Air cushion	музв
	Stroke adjustment unit (Option: L, H unit)	Shock absorber	MY3B Note 4) Note 5)
	External stopper	External shock absorber Note 2)	MY3A MY3B Note 3)

Note 1) Mechanically jointed rodless cylinders can be used with a direct load within the allowable range for each guide type, however, careful alignment is necessary for connection to a load which has an external guide mechanism. The mounting bracket for the external guide and the floating bracket must be mounted in a position that guarantees freedom of movement to the floating Y and Z axial. Ensure that the floating bracket is set so that the thrust transmission section has even contact.

* For details on the floating Y and Z axial, refer to the coordinates and moments in the selection method on page 1435.

Note 2) The shock absorber must meet the conditions mentioned on pages 1422 and 1423.

Note 3) As the external shock absorber, a unit with appropriate capacity and features should be installed close to the load center of gravity.

Note 4) Use the stroke adjustment unit of the MY3B series with an external guide.

Note 5) Shown below are the details of the maximum operating speed for the stroke adjustment unit.

MY3 Series, Maximum Operating Speed when Using the Stroke Adjustment Unit

Unit: mm/s

Series	Bore size (mm)	Stroke adjustment range	Inside the fine stroke adjustment range	Outside the fine stroke adjustment range
	16, 20	L unit	800	500
MY3B	10, 20	H unit	1000	800
	25, 32, 40, 50, 63	L, H unit	1000	800
MY3M	16, 25, 40, 63	L, H unit	1500	800

Outside the fine stroke adjustment range means that when a intermediate fixing spacer (short spacer, long spacer) is used. Intermediate fixing spacer \rightarrow Refer to pages 1425 and 1445.

MY1B

MY1H

MY1B

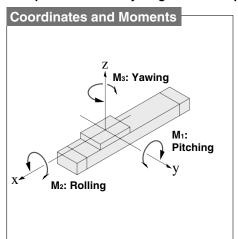
MY1M

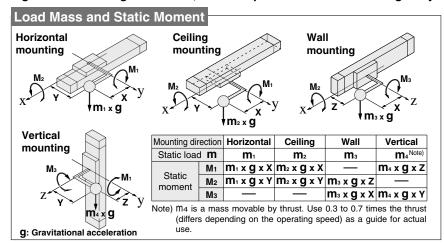
MY1C

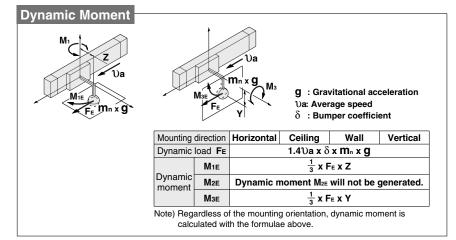
MY1H MY1

MY1

MY2C


H/HT


MY3M



Types of Moment and Load Mass Applied to Rodless Cylinders

Multiple moments may be generated depending on the mounting orientation, load and position of the center of gravity.

Caution on Design

If the product is operated with a guide load factor which exceeds the standard value, malfunction may occur due to damage to the internal parts of the slide table. Therefore, be sure to confirm that the guide load factor is 1 or less.

Calculation of Guide Load Factor

- 1. Maximum load mass (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
 - * To evaluate, use $\mathfrak{V}a$ (average speed) for (1) and (2), and \mathfrak{V} (impact speed $\mathfrak{V}=1.4\mathfrak{V}a$) for (3). Calculate m max for (1) from the maximum allowable load graph (m₁, m₂, m₃) and Mmax for (2) and (3) from the maximum allowable moment graph (M₁, M₂, M₃).

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the load, etc., with symider in resuring condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).

Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma \alpha$) is the total of all such moments.

2. Reference formulas [Dynamic moment at impact]

Use the following formulas to calculate dynamic moment when taking stopper impact into consideration.

m : Load mass (kg)

F: Load (N)

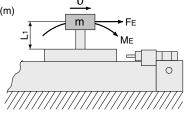
FE: Load equivalent to impact (at impact with stopper) (N)

Va: Average speed (mm/s)M: Static moment (N⋅m)

 $\upsilon = 1.4\upsilon a \text{ (mm/s)}$ $F_E = 1.4\upsilon a x \delta x m \cdot g$

 $\therefore ME = \frac{1}{3} \cdot FE \cdot L_1 = 4.57 \text{Va} \delta m L_1 (N \cdot m)$

 υ : Impact speed (mm/s)


 $L_{\mbox{\scriptsize 1}}$: Distance to the load's center of gravity (m)

Me: Dynamic moment (N \cdot m)

 δ : Bumper coefficient
With rubber bumper = 4/100

With air cushion = 1/100
With shock absorber = 1/100

g: Gravitational acceleration (9.8 m/s²)

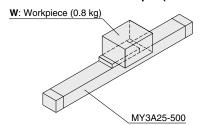
Note 4) 1.4 $\upsilon a\delta$ is a dimension less coefficient for calculating impact force.

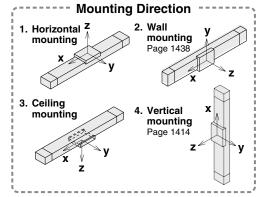
Note 5) Average load coefficient = $\left(\frac{1}{3}\right)$:

This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.

3. For detailed selection procedure, please refer to pages 1414, 1415, 1438, 1439.

Calculation of Guide Load Factor

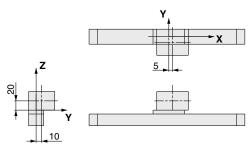

1 Operating Conditions


Cylinder MY3A25-500

Average operating speed $\upDelta a$ 300 mm/s

Mounting direction Horizontal mounting

Cushion ····· Rubber bumper (δ = 4/100)



Refer to the pages mentioned above for actual examples of calculation for each orientation.

* For ceiling mounting, refer to 1280.

2 Load Blocking

Workpiece Mass and Center of Gravity

Markaine	Mass	С	enter of gravi	ty
no.	orkpiece Mass no. (m)	X-axis	Y-axis	Z-axis
W	0.8 kg	5 mm	10 mm	20 mm

3 Calculation of Load Factor for Static Load

m₁: Mass

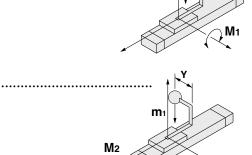
m₁ max (from ① of graph MY3A / **m**₁) = 10.7 (kg)

Load factor $\alpha_1 = \mathbf{m}_1 / \mathbf{m}_1 \text{ max} = 0.8 / 10.7 = \mathbf{0.08}$

M₁: Moment

M₁ max (from ② of graph MY3A / M₁) = 4 (N·m)

 $M_1 = M_1 \times g \times X = 0.8 \times 9.8 \times 5 \times 10^{-3} = 0.04 \text{ (N} \cdot \text{m)}$


Load factor $\alpha_2 = M_1 / M_1 \text{ max} = 0.04 / 4 = 0.01$

M2: Moment

M2 max (from ③ of graph MY3A / M2) = 0.8 (N·m)

 $M_3 = M_1 \times g \times Y = 0.8 \times 9.8 \times 10 \times 10^{-3} = 0.08 \text{ (N} \cdot \text{m)}$

Load factor $0.3 = M_2 / M_2 max = 0.08 / 0.8 = 0.1$

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H MY1

MY1

MY2C

H/HT

MY3M

Technical Data

-X□

Calculation of Guide Load Factor

4 Calculation of Load Factor for Dynamic Moment

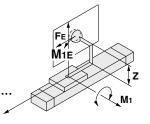
Equivalent load FE at impact

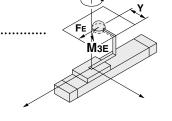
FE = 1.4
$$vax \delta x m x g = 1.4 x 300 x \frac{4}{100} x 0.8 x 9.8 = 131.7 (N)$$

M1E: Moment

M1E max (from 4) of graph MY3A / M1 where 1.41a = 420 mm/s) = 2.85 (N·m)

M1E =
$$\frac{1}{3}$$
x **F**E x **Z** = $\frac{1}{3}$ x 131.7 x 20 x 10⁻³ = 0.88 (N·m)


Load factor 0.4 = M1E / M1E max = 0.88 / 2.85 = 0.31


M3E: Moment

M3E max (from \odot of graph MY3A / M3 where 1.4 \circ a = 420 mm/s) = 0.95 (N·m)

M3E =
$$\frac{1}{3}$$
 x **F**E x **Y** = $\frac{1}{3}$ x 131.7 x 10 x 10⁻³ = 0.44 (N·m)

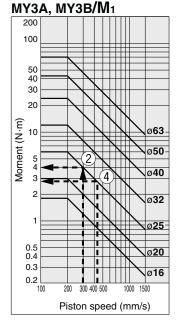
Load factor CL5 = M3E / M3E max = 0.44 / 0.95 = 0.43

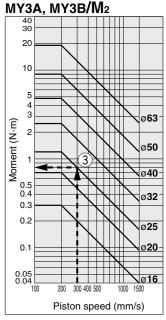
5 Sum and Examination of Guide Load Factors

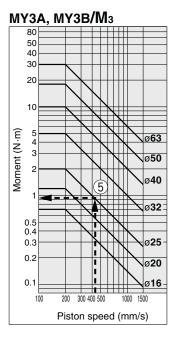
$$\Sigma \alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 0.08 + 0.01 + 0.1 + 0.31 + 0.43 = 0.93 \le 1$$

The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.

In an actual calculation, when the sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series.

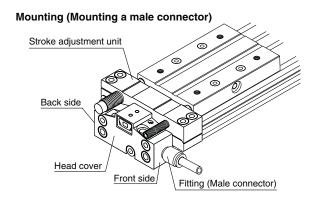

Load Mass


MY3A, MY3B/m₁



Refer to page 1439 for the MY3M.

Allowable Moment



Mounting of Fitting and Speed Controller

When the stroke adjustment unit is used with MY3B and MY3M, the fittings mountable on the front or back port will be limited to those listed below.

In such cases, since **direct mount type speed controllers cannot be mounted**, use in-line type speed controllers. (Except MY3B40/50/63 and MY3M63)

Refer to Best Pneumatics No. 7 for the details of fittings and speed controllers.

Direct Mount Type Speed Controller

Elbow/Universal type
AS□□□1F

In-line type
AS□□□1F

MY1B MY1H MY1B

MY1M

MY1C MY1H

MY1 HT MY1

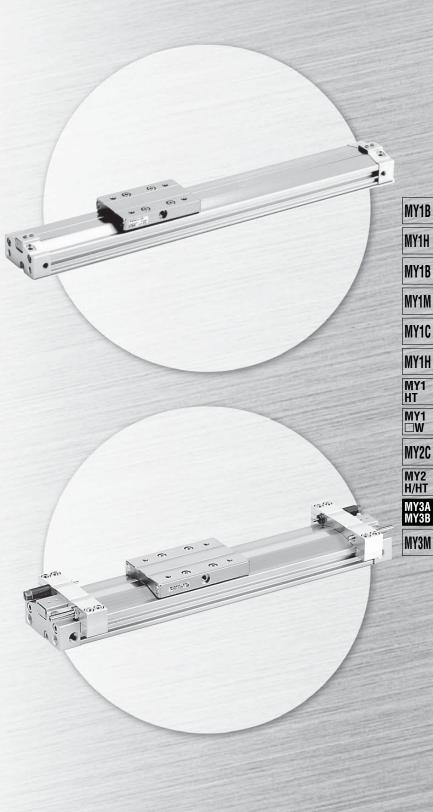
> MY2C MY2 H/HT

MY3A MY3B

Cylinday	Connection	Applicable		
Cylinder model size	thread	tubing O.D. (mm)	Fitting type	Fitting model
			Male connector	KQ2H23-M5□
			Male elbow	KQ2L23-M5□
		3.2	Hexagon socket head male connector	KQ2S23-M5□
			Male connector	KQ2H23-M5
MY3□16	M5		Male elbow	KQ2L23-M5
			Male elbow	KQ2L04-M5□
		4	Male elbow	KQ2L04-M5
			Hexagon socket head male connector	KQ2S04-M5
		6	Male elbow	KQ2L06-M5
			Hexagon socket head male connector	KQ2S23-M5□
		3.2	Male connector	KQ2H23-M5
			Male elbow	KQ2L23-M5
			Male connector	KQ2H04-M5
MY3□20	M5	4	Male elbow	KQ2L04-M5
			Hexagon socket head male connector	KQ2S04-M5
		6	Male connector	KQ2H06-M5
			Male elbow	KQ2L06-M5
			Hexagon socket head male connector	KQ2S06-M5
		3.2	Male connector	KQ2H23-01S
		3.2	Male elbow	KQ2L23-01S
			Male connector	KQ2H04-01□S
			Hexagon socket head male connector	KQ2S04-01□S
		4	Male connector	KQ2H04-01S
MY3□25	Rc1/8		Male elbow	KQ2L04-01S
IVI I SLIZS	nc 1/6		Hexagon socket head male connector	KQ2S04-01S
			Male connector	KQ2H06-01□S
			Male elbow	KQ2L06-01□S
		6	Hexagon socket head male connector	KQ2S06-01□S
			Male elbow	KQ2L06-01S
			Hexagon socket head male connector	KQ2S06-01S
			Male connector	KQ2H04-01S
		4	Male elbow	KQ2L04-01S
			Hexagon socket head male connector	KQ2S04-01S
			Male connector	KQ2H06-01S
MY3□32	Rc1/8	6	Male elbow	KQ2L06-01S
			Hexagon socket head male connector	KQ2S06-01S
			Male connector	KQ2H08-01S
		8	Male elbow	KQ2L08-01S
			Hexagon socket head male connector	KQ2S08-01S

Cylinder model size	Connection thread	Applicable tubing O.D. (mm)	Fitting type	Fitting model					
		4	Male connector	KQ2H04-02S					
			Male connector	KQ2H06-02S					
		6	Male elbow	KQ2L06-02S					
MY3□40	Rc1/4		Hexagon socket head male connector	KQ2S06-02S					
			Male connector	KQ2H08-02S					
		8	Male elbow	KQ2L08-02S					
			Hexagon socket head male connector	KQ2S08-02S					
			Male connector	KQ2H06-03S					
		6	Male elbow	KQ2L06-03S					
			Hexagon socket head male connector	KQ2S06-03S					
			Male connector	KQ2H08-03S					
	Rc3/8	Do2/0	8	Male elbow	KQ2L08-03S				
MY3□50			Do2/9		Hexagon socket head male connector	KQ2S08-03S			
IVI T 3LI3U		1100/0	Male connector	KQ2H10-03S					
								10	Male elbow
			Hexagon socket head male connector	KQ2S10-03S					
			Male connector	KQ2H12-03S					
		12	Male elbow	KQ2L12-03S					
			Hexagon socket head male connector	KQ2S12-03S					
		6	Male connector	KQ2H06-03S					
		8	Male elbow	KQ2L08-03S					
			Male connector	KQ2H10-03S					
		10	Male elbow	KQ2L10-03S					
MY3□63	IY3□63 Rc3/8		Hexagon socket head male connector	KQ2S10-03S					
		12	Male connector	KQ2H12-03S					
			Male elbow	KQ2L12-03S					
			Hexagon socket head male connector	KQ2S12-03S					
		16	Male elbow	KQ2L16-03S					

MY3A Series


Basic, short type (Rubber bumper)

Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

MY3B Series

Basic, standard type (Air cushion)

Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

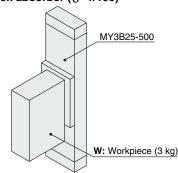
D-□

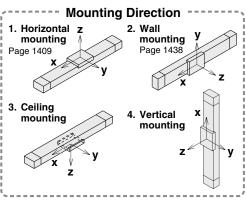
-X□

Technical Data

Model Selection

The following are steps for selecting the MY3 series which is best suited to your application.

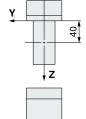

Calculation of Guide Load Factor

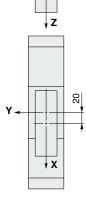

1 Operating Conditions

Cylinder MY3B25-500 Average operating speed 0a $\cdots 300$ mm/s

Mounting direction Vertical mounting

Cushion----- Shock absorber (δ =1/100)





Refer to the pages mentioned above for actual examples of calculation for each orientation.

* For ceiling mounting, refer to page 1280.

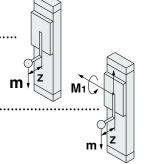
2 Load Blocking

Workpiece Mass and Center of Gravity

Workpiece	Mass	Center of gravity				
no.	(m)	X-axis	Y-axis	Z-axis		
W	3 kg	20 mm	0 mm	40 mm		

3 Calculation of Load Factor for Static Load

m: Mass


m is a mass moveable by thrust. Use 0.3 to 0.7 times the thrust (differs depending on the operating speed) as a guide for actual use.

M₁: Moment

M1 max (from ① of graph MY3A/3B/M1) = 4 (N·m)

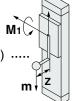
 $M_1 = \mathbf{m} \times \mathbf{g} \times \mathbf{Z} = 3 \times 9.8 \times 40 \times 10^{-3} = 1.18 \text{ (N·m)}$

Load factor $\alpha_1 = M_1 / M_2 = 1.18 / 4 = 0.29$

Calculation of Guide Load Factor

4 Calculation of Load Factor for Dynamic Moment

Equivalent load FE at impact


Fe =
$$1.4 \text{Va} \times \delta \times \mathbf{m} \times \mathbf{g} = 1.4 \times 300 \times \frac{1}{100} \times 3 \times 9.8 = 123.56 \text{ (N)}$$

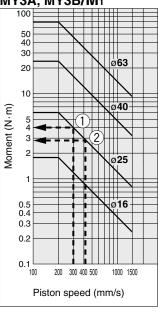
M1E: Moment

M1E max (from ② of graph MY3A/3B/M1 where 1.40a = 420 mm/s) = 2.86 (N·m)

M1E =
$$\frac{1}{3}$$
 x **F**E x **Z** = $\frac{1}{3}$ x 123.56 x 40 x 10⁻³ = 1.65 (N·m)

Load factor $\Omega_2 = M_{1E}/M_{1E} \text{ max} = 1.65/2.86 = 0.58$

5 Sum and Examination of Guide Load Factors


$$\Sigma \alpha = \Omega_1 + \Omega_2 = 0.87 \le 1$$

The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.

In an actual calculation, when the sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series. Calculating the above formula is easy with the [SMC Pneumatics CAD System].

Allowable Moment

MY3A, MY3B/M₁

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

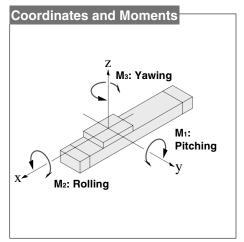
MY1 HT

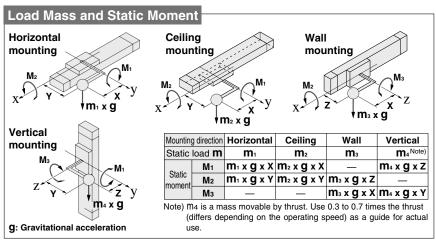
□W MY2C

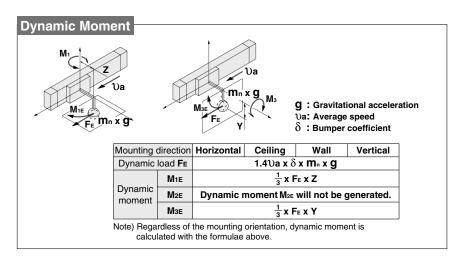
MY2 H/HT

MY3A MY3B

MY3M

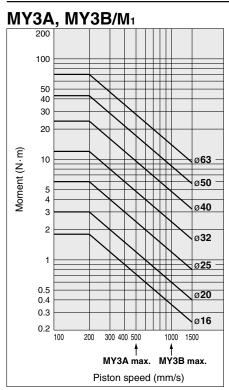

Maximum Allowable Moment / Maximum Allowable Load

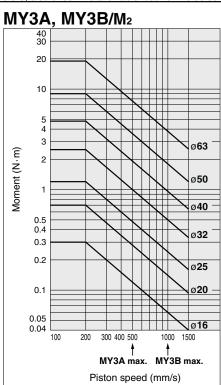

Carias	Bore size	Maximum Allowable Moment (N·m)			Maximum Allowable Load (kg)		
Series	(mm)	M1	M2	Мз	m ₁	m ₂	mз
	16	1.8	0.3	0.7	6	3	1.5
	20	3	0.7	1.2	10	4.3	2.4
	25	6	1.2	2	16	6	4
MY3A MY3B	32	12	2.5	5	26	8.5	6.7
	40	24	4.8	10	40	12	10
	50	43	9	18	56	17	14
	63	70	19	30	80	24	20

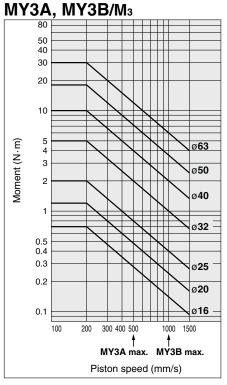

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Types of Moment and Load Mass Applied to Rodless Cylinders

Multiple moments may be generated depending on the mounting orientation, load and position of the center of gravity.

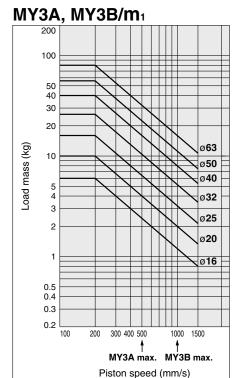


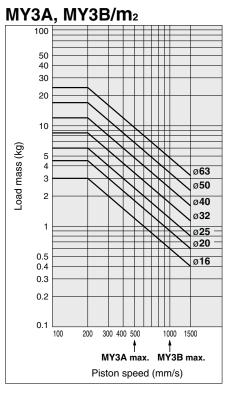


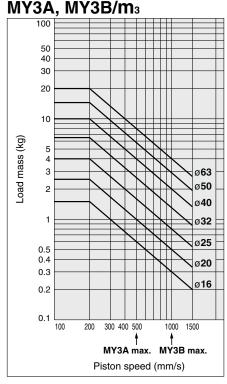


Model Selection MY3A/3B Series

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum **Maximum Allowable Moment /** Therefore, also check the allowable load for the selected conditions.







Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs.

Maximum Allowable Load / Therefore, also check the allowable load for the selected conditions.

D-□

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

MY1

HT MY1

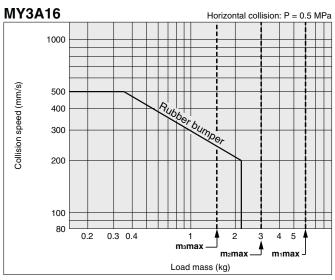
 \square W

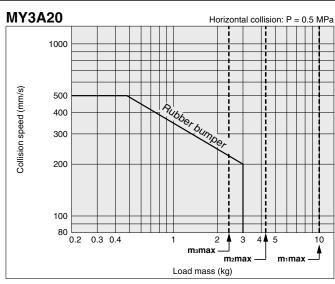
MY2C

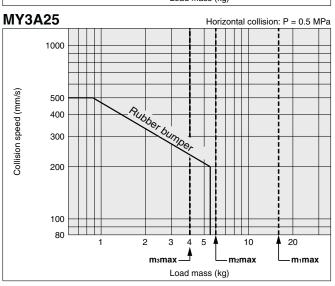
MY2

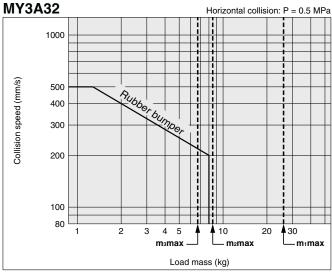
H/HT

MY3M

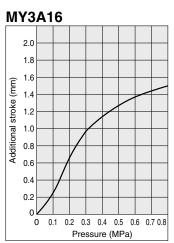

Technical Data

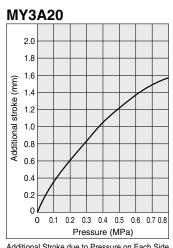

-X□



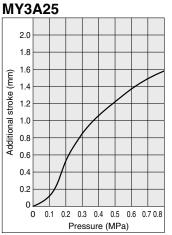

Cushion Capacity

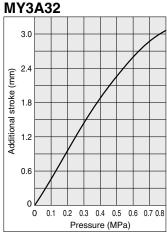
Absorption Capacity of Rubber Bumper (MY3A)



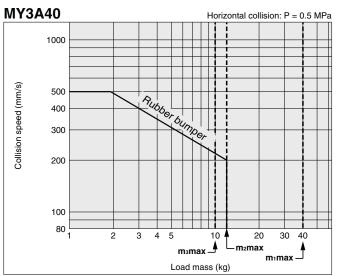


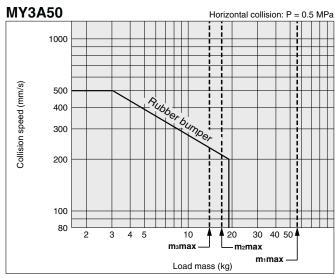
Rubber Bumper Displacement (Additional Stroke due to Pressure on Each Side)

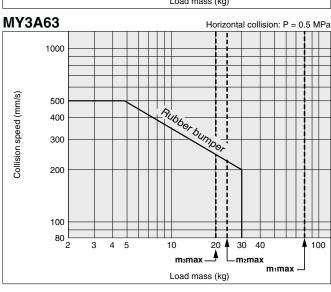

The stop position of the built-in rubber bumper of the MY3A series varies depending on the operating pressure. For alignement at the stroke end, find the guideline for the stroke end position in operation as follows. Find the incremental displacement at the operating pressure in the graph and add it to the stroke end position at no pressurization. If positioning accuracy is required for the stop position at the stroke end, consider installing an external positioning mechanism or switching to the air cushion type (MY3B).


Additional Stroke due to Pressure on Each Side (MY3A16)

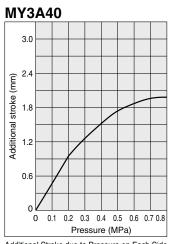
Additional Stroke due to Pressure on Each Side (MY3A20)

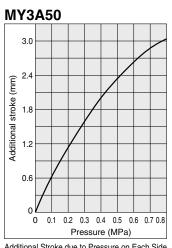

Additional Stroke due to Pressure on Each Side (MY3A25)



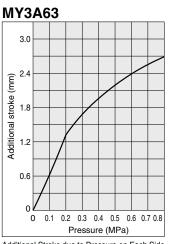

Additional Stroke due to Pressure on Each Side (MY3A32)

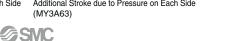
Model Selection MY3A/3B Series




MY1H MY1B MY1M MY1C MY1H MY1 HT MY1 □W MY2C MY2 H/HT

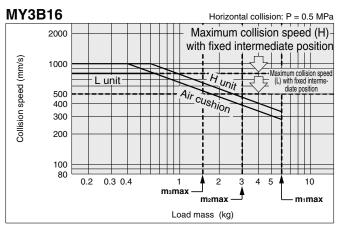
MY3M

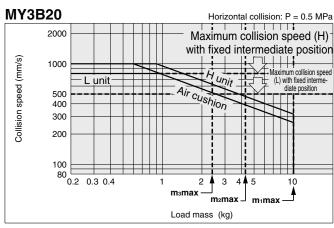

MY1B

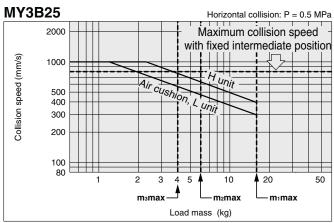

Additional Stroke due to Pressure on Each Side (MY3A40)

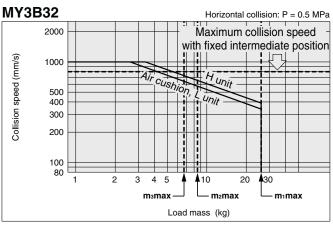
Additional Stroke due to Pressure on Each Side (MY3A50)

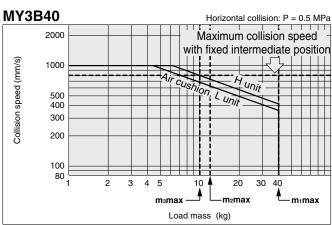
Additional Stroke due to Pressure on Each Side (MY3A63)

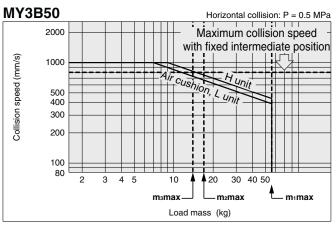


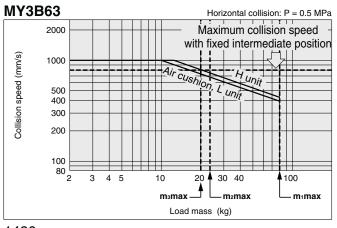



D-□


Cushion Capacity


Absorption Capacity of Air Cushion and Stroke Adjustment Unit (MY3B)





Air Cushion Stro	OKE Unit: mm
Bore size (mm)	Cushion stroke
16	13
20	16
25	18
32	22
40	25
50	28
63	30

Calculation of Absorbed Energy for Stroke Adjustment Unit with Built-in Shock Absorber Linit: Nom

rajaotinone o	=		OTION OTHER NAME
	Horizontal	Vertical (downward)	Vertical (upward)
Type of collision	m s	U m	s + c
Kinetic energy E 1		$\frac{1}{2}m\!\cdot\!\mathcal{V}^2$	
Thrust energy E 2	F⋅s	F⋅s + m⋅g⋅s	F·s – m·g·s
Absorbed energy E		E1 + E2	

Stroke Adjustment Unit Fine Stroke Adjustment Range

Unit: mm

MY1B

MY1H

MY1M

MY1C

MY1H

MY1

MY1

 \square W

MY2C

MY2

H/HT

MY3M

HT

Bore size (mm)	Fine stroke adjustment range
16, 20	0 to -10
25, 32	0 to -12
40, 50	0 to -16
63	0 to -24

Note) The maximum operating speed will differ when the stroke adjustment unit with the spacer for intermediate securing is used outside the maximum fine stroke adjustment range (with reference to the fixed stroke end). (Refer to the graph on page 1420.)

Symbols

- $\dot{\mathfrak{V}}$: Speed of impacting object (m/s)
- F: Cylinder thrust (N)
- m: Weight of impacting object (kg)
- a: Gravitational acceleration (9.8 m/s2)
- s : Shock absorber stroke (m)

Note) The speed of the impacting object is measured at the time of collision with the shock

Note) With an operating pressure of 0.6 MPa or larger, the use of a cushion or an external shock absorber conforming to the conditions on pages 1422 and 1423 is recommended.

Stroke Adjustment

<Stroke adjustment of the adjustment bolt>

Loosen the lock nut for the adjustment bolt, adjust the stroke on the head cover side with a hexagon wrench, and secure with a lock nut.

<Stroke adjustment of the shock absorber: MY3B>

Loosen the two unit fixing bolts on the shock absorber side and rotate the shock absorber for stroke adjustment. Tighten the unit fixing bolts equally to secure the shock absorber. Use caution not to overtighten the fixing bolts.

(Refer to "MY3B Stroke Adjustment Unit Tightening Torque for Fixing Bolts.")

MY3B Stroke Adjustment Unit

Tightening Torque for Fixing Bolts

Unit: N•m

Bore size (mm)	Unit	Tightening torque
16, 20	L	0.7
10, 20	Н	0.7
25, 32	L	3.5
25, 32	Н	3.3
40, 50	L	10.0
40, 50	Н	13.8
63	L	07.5
03	Н	27.5

⚠ Caution

1. Use caution not to have your hands caught in the unit.

When using a cylinder with stroke adjustment unit, the space between the slide table (slider) and the stroke adjustment unit is very narrow. Care should be taken to avoid the danger of hands being caught in this small space. Install a protective cover to prevent the risk of accidents to the human body.

2. The stroke adjustment unit may interfere with the mounting bolt when mounting the cylinder on the equipment.

Loosen the unit fixing bolt and dislocate the stroke adjustment unit before mounting the cylinder. After fixing the cylinder, move the stroke adjustment unit back to the desired location and tighten the unit fixing bolt.

Use caution not to overtighten the fixing bolts.

(Refer to "MY3B Stroke Adjustment Unit Tightening Torque for Fixing Bolts".)

3. Use an external guide for the MY3B stroke adjustment unit.

If a stroke adjustment unit is used where a load is directly applied, the collision reaction may cause damage to the cylinder.

4. Conduct stroke adjustment with an adjustment bolt as follows:

The adjustment bolt should be secured on the same surface as the shock absorber after stroke adjustment.

If the stopper surface of the shock absorber and the end surface of the adjustment bolt are not on the same level, it may result in an unstable stop position of the slide table or reduced durability.

5. Securing the unit body

<MY3B>

Adjustment bolt lock nut Stroke adjustment unit fixing bolt Shock absorber

Tighten the four unit fixing bolts equally to secure the unit body.

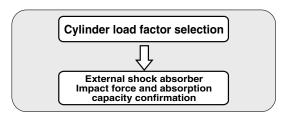
6. Do not fix and use the stroke adjustment unit at an intermediate position (MY3B).

When the stroke adjustment unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In that case, use a short spacer or a long spacer. For other lengths, please consult with SMC.

(Refer to "MY3B Stroke Adjustment Unit Tightening Torque for Fixing Bolts.")

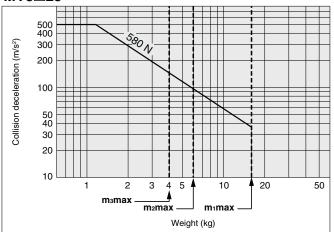
If the stroke adjustment unit is fixed at an intermediate position, the energy absorption capacity may be different. For this reason, refer to the maximum absorbed energy listed above, and use the adjustment unit within the allowable absorption capacity.

Technical

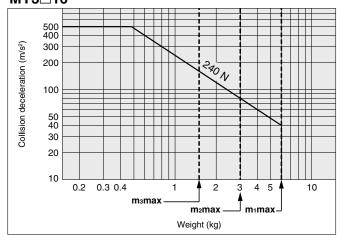


External Shock Absorber Selection

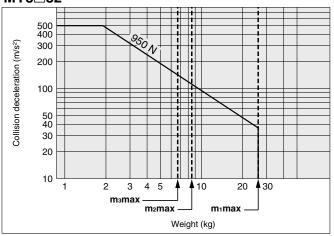
When the positioning of the stop position is necessary or the absorption capacity of the built-in cushion is not sufficient, refer to the selection procedure below and consider the installation of an external shock absorber.

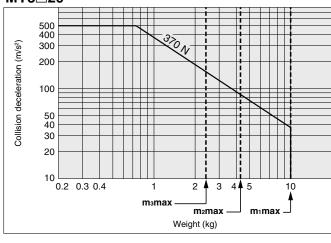

Selection Confirmation Items with Use of External Shock Absorber

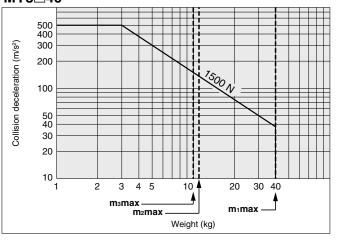
1 When the cylinder alone is used.

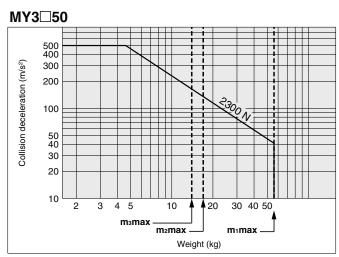


Allowable impact force with use of external shock absorber

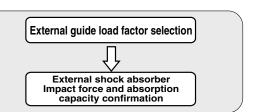

MY3□25


MY3□16


MY3□32


MY3□20

MY3□40



Model Selection MY3A/3B Series

MY3□63 500 400 Collision deceleration (m/s²) 300 200 100 30 20 10 30 40 3 4 5 100 10 20 m₃max `m₂max m₁max Weight (kg)

2 When the external guide is used.

Piston Speed with Use of External Shock Absorber

Bore size (mm)	16	20	25	32	40	50	63	
МҮЗА	80 to 1500 mm/s							
МҮЗВ								

An external shock absorber can be used within the above piston speed range. In conjunction with the absorption capacity selection, however, also confirm the conditions which make the shock absorber collision impact force to stay within the allowable range in the graph.

Use of an external shock absorber with conditions exceeding the allowable range may damage the cylinder.

To confirm the collision impact force of the shock absorber, first find the impact force or acceleration under the operating conditions using the selection information or selection software provided by the manufacturer and then, refer to the graph.

(The selection should allow a sufficient margin because the value calculated by the selection software involves an error with reference to the actual value.)

Example of Recommended Use of the External Shock Absorber

MY3□(16 = RB-OEM0.25M
$MY3\square \binom{25}{32} \Longrightarrow RB\text{-}OEM0.5M$
$MY3\Box \Big(^{40}_{50} \Longrightarrow RB\text{-OEM1.0MF}$
MY3□ 63 ⇒ RB-OEM1.5M x 1

Technical

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

MY1

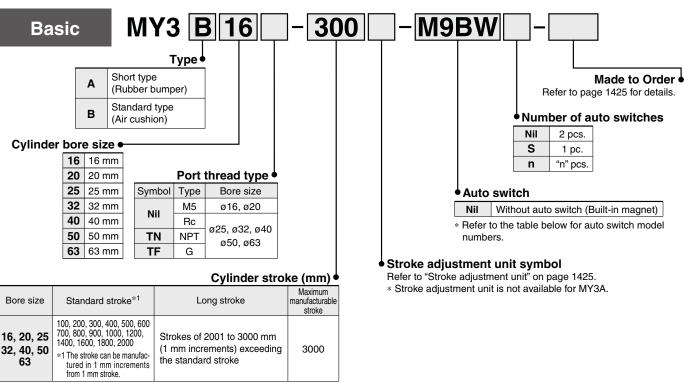
MY1

 $\square W$

MY2C

MY2

H/HT


MY3M

Mechanically Jointed Rodless Cylinder/Basic Type

MY3A/3B Series

Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

How to Order

Ordering example

Applicable Auto Switches/Refer to pages 1575 to 1701 for further information on auto switches.

		F	light	\A#: :	Load voltage		Auto swit	ch model	Lead wire length (m)																
Туре	nel Special function	Electrical entry	Indicator light	Wiring (Output)	D	С	AC	Perpendicular	In-line	0.5 (Nil)	1 (M)	3 (L)	5 (Z)	Pre-wired connector	Applical	ble load									
				3-wire (NPN)		5 V. 12 V		M9NV	M9N	•	•	•	0	0	IC circuit										
switch				3-wire (PNP)		5 V, 12 V		M9PV	M9P	•	•	•	0	0	ic circuit										
SWi				2-wire		12 V		M9BV	M9B	•	•	•	0	0	_										
anto	5			3-wire (NPN)	24 V 5 V, 12 V	24 V 5 V, 1					5 V 10	5 V 40 V	5 V 40 V	E V 10 V	E V 10 V		M9NWV	M9NW	•	•	•	0	0	IC circuit	
a a	Diagnostic indication (2-color indicator)	Grommet	Yes	3-wire (PNP)			5 V, 12 V	4 V 3 V, 12 V	5 V, 12 V	J V, 12 V		_		M9PWV	M9PW	•	•	•	0	0	IC Circuit	Relay, PLC			
state	(2 color maloator)			2-wire		12 V	12 V		M9BWV	M9BW	•	•	•	0	0	_	1 20								
p s				3-wire (NPN)	5 V, 12 V	5 V, 12 V	5.11.40.11		M9NAV*1	M9NA*1	0	0	•	0	0	IC circuit									
Solid	Water resistant (2-color indicator)			3-wire (PNP)								5 V, 12 V		M9PAV*1	M9PA*1	0	0	•	0	0	IC CITCUIT				
•	(2 color iridicator)			2-wire		12 V		M9BAV*1	M9BA*1	0	0	•	0	0	_										
ed switch		Crommet	Yes	3-wire (NPN equiv.)	.) –	5 V	_	A96V	A96	•	_	•	_	_	IC circuit	_									
Reed auto swit		Grommet		Ossira	24 V	12 V	100 V	A93V*2	A93	•	•	•	•	_	_	Relay,									
anı	ant										No	2-wire	24 V	12 V	100 V or less	A90V	A90	•	_	•	_	_	IC circuit	PLC	

- *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. Consult with SMC regarding water resistant types with the above model numbers.
- *2 1 m type lead wire is only applicable to D-A93.
- * Lead wire length symbols: 0.5 m Nil (Example) M9NW

 1 m M (Example) M9NWM

 3 m L (Example) M9NWL

 5 m Z (Example) M9NWZ
- \ast Solid state auto switches marked with "O" are produced upon receipt of order.
- * Separate switch spacers (BMY3-016) are required for retrofitting of auto switches.
- * There are other applicable auto switches than listed above. For details, refer to page 1451.
- * Refer to pages 1648 and 1649 for the details of auto switches with a pre-wired connector.
- * Auto switches are shipped together (not assembled). (Refer to page 1451 for the details of auto switch mounting.)

^{*} Long stroke can be ordered the same as the standard stroke. MY3A20-3000L-M9BW Note) Please be advised that with stroke 49 or less, there are cases where auto switch mounting is not possible and the performance of the air cushion may decline.

Mechanically Jointed Rodless Cylinders MY3A/3B Series

MY3A (Rubber bumper) MY3B (Air cushion) Symbol Rubber bumper Air cushion

Made to Order: Individual Specifications (For details, refer to page 1452.)

Symbol	Specifications
-X168	Helical insert thread

Made to Order

Click here for details

Symbol	Specifications					
-XB22	Shock absorber soft type RJ series type					

Specifications

	10.00			=0.00					
Bore size (mm)	16, 20	25, 32	40	50, 63					
Fluid	Air								
Action	Double acting								
Operating pressure range	0.2 to 0.8 MPa	MPa 0.15 to 0.8 MPa							
Proof pressure		1.2	MPa						
Ambient and fluid temperature		5 to	60°C						
Cushion	Rubbe	r bumper (MY3A	A) / Air cushion (I	MY3B)					
Lubrication		Not required							
Stroke length tolerance	1000 n	nm or less +1.8, I	rom 1001 mm +	2.8 Note)					
Port size (Rc, NPT, G)	M5 x 0.8	1/8	1/4	3/8					

Note) The tolerance of the MY3A is a value with no pressurization. When a rubber bumper is used, the stroke of the MY3A varies according to the operating pressure.

To find the stroke length tolerance at each operating pressure, double the additional stroke due to pressure on each side (pages 1418 and 1419) and add it.

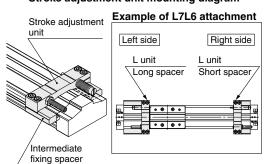
Piston Speed

Bore size (mm)	16	20	25	32	40	50	63			
Without stroke adjustment unit (MY3A)			80 t	o 500 n						
Without stroke adjustment unit (MY3B)	80 to 1000 mm/s									
Stroke adjustment unit	80 to 1000 mm/s 80 to 1000 mm/s (ø16, ø20 L unit: 80 to 800 mm/s)									
(L and H unit/MY3B)		(ø16,	ø20 L ι	ınit: 80	to 800 r	mm/s)				
External shock absorber (low reaction type)*	80 to 1500 mm/s									

- * Refer to "External Shock Absorber Selection" on pages 1422 and 1423. When the RB series is used, operate at a piston speed that will not exceed the absorption capacity of the air cushion and stroke adjustment unit.
- * Because of its structure, the fluctuation of this cylinder's operating speed is greater than rod type cylinders. For applications that require constant speed, select an applicable equipment for the level of demand.

Stroke Adjustment Unit Specifications

Bore size (mm)		16, 20		25, 32		40,	50	63	
Unit symbol		L	Н	L	Н	L	Н	L	Н
Shock absorber model		RB0806	RB1007	RB1007	RB1412	RB1412	RB2015	RB2015	RB2725
	Shock absorber soft type RJ series (-XB22) model		RJ1007H	RJ1007H	RJ1412H	RJ1412H	_	_	_
Stroke adjustment	Without spacer	0 to -10 -10 to -20		0 to -12		0 to -16		0 to -24	
range by intermediate	With short spacer			–12 t	o –24	−16 t	o –32	-24 to -48	
fixing spacer (mm)	With long spacer	−20 to	o –30	−24 t	o –36	−32 to −48		–48 te	o –72


^{*} Stroke adjustment range is applicable for one side when mounted on a cylinder.

Stroke Adjustment Unit Symbol

			Right side stroke adjustment unit								
			Without	L: With lov + Adjustm	v load shock ent bolt	absorber	H: With high load shock absorber + Adjustment bolt				
			unit		With short spacer	With long spacer		With short spacer	With long spacer		
	Without	unit	Nil	SL	SL6	SL7	SH	SH6	SH7		
i še		oad shock absorber +	LS	L	LL6	LL7	LH	LH6	LH7		
stro	Adjustment	With short spacer	L6S	L6L	L6	L6L7	L6H	L6H6	L6H7		
a e	bolt	With long spacer	L7S	L7L	L7L6	L7	L7H	L7H6	L7H7		
Left side stroke adjustment unit		load shock absorber +	HS	HL	HL6	HL7	Н	HH6	HH7		
Lef	Adjustment	With short spacer	H6S	H6L	H6L6	H6L7	Н6Н	Н6	Н6Н7		
	_ e bolt	With long spacer	H7S	H7L	H7L6	H7L7	H7H	H7H6	H7		

 $[\]ast$ Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

Stroke adjustment unit mounting diagram

Shock Absorber Specifications

Т	ype	RB 0806	RB 1007	RB 1412	RB 2015	RB 2725	
Max. energy	absorption (J)	0.84	2.4	10.1	29.8	46.6	
Stroke abs	orption (mm)	6	7	12	15	25	
Max. collisio	n speed (mm/s)	1000					
Max. operating fr	equency (cycle/min)	80	70	45	25	10	
Spring	Extended	1.96	4.22	6.86	8.34	8.83	
force (N)	Compressed	4.22	6.86	15.98	20.50	20.01	
Operating temperature range (°C)		5 to 60					

Note) The shock absorber service life is different from that of the MY3A/3B cylinders depending on operating conditions. Allowable operating cycle under the specifications set in this catalog is shown below.

1.2 million times RB08□□ 2 million times RB10□□ to RB2725

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

MY1 HT MY1 W MY2C MY2 H/HT

MY3M

Theoretical Output

								Unit: N
Bore size	Piston		C	perating	g pressu	re (MPa	ı)	
(mm)	area (mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8
16	200	40	60	80	100	120	140	160
20	314	62	94	125	157	188	219	251
25	490	98	147	196	245	294	343	392
32	804	161	241	322	402	483	563	643
40	1256	251	377	502	628	754	879	1005
50	1962	392	588	784	981	1177	1373	1569
63	3115	623	934	1246	1557	1869	2180	2492

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Weight

						Unit: kg	
Model	Bore size	Basic	Additional weight per	Weight of	Stroke adjustment unit weight (per unit)		
Woder	(mm)	weight	50 mm stroke	moving parts	L unit weight	H unit weight	
	16	0.21	0.06	0.06		/	
	20	0.39	0.09	0.12	/		
	25	0.62	0.11	0.20			
MY3A	32	1.25	0.18	0.37			
	40	2.31	0.25	0.67		/	
	50	3.72	0.40	1.07			
	63	6.46	0.56	2.16		/	
	16	0.22	0.06	0.06	0.04	0.05	
	20	0.49	0.09	0.12	0.06	0.08	
	25	0.71	0.11	0.20	0.10	0.15	
MY3B	32	1.39	0.18	0.37	0.14	0.22	
	40	2.41	0.25	0.67	0.26	0.30	
	50	4.10	0.40	1.08	0.38	0.52	
	63	7.04	0.56	2.16	0.57	0.92	

Calculation method/Example: MY3B25-300L

Basic weight 0.71 kg Cylinde Additional weight 0.11/50 st

Cylinder stroke · · · · 300 st

L unit weight 0.1 kg

 $0.71 + 0.11 \times 300 \div 50 + 0.1 \times 2 \approx 1.57 \text{ kg}$

Option

Stroke Adjustment Unit Part No.

Unit no.

Stroke adjustment unit

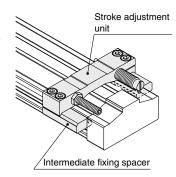
	Bore size ●							
16	16 mm							
20	20 mm							
25	25 mm							
32	32 mm							
40	40 mm							
50	50 mm							
63	63 mm							

Symbol Stroke adjustment unit Mounting position

L1
L2
H1
H unit
H unit

Mounting position
Left
Right

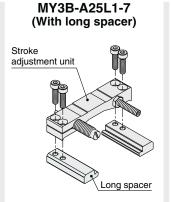
Note) Refer to page 1425 for details about adjustment range.


Intermediate fixing spacer

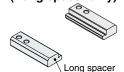
Nil	Without spacer
6□	Short spacer
7┆	Long spacer

Spacer delivery type

- Opao	or admitally type
Nil	Unit installed
N	Spacer only


- Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.
- * Spacers are shipped for a set of two.

Component Parts


H2

MY3B-A25L1 (Without spacer) Stroke adjustment unit Stroke adjustment unit Stroke adjustment unit Stroke adjustment unit Stroke adjustment unit

MY1B

MY1H

MY1B

MY1M

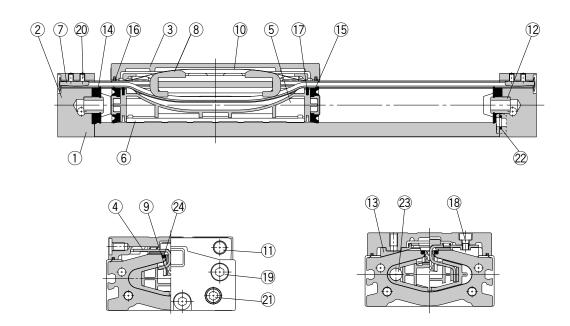
MY1C

MY1H

MY1 HT

MY1 □W

MY2 H/HT


MY3A MY3B

MY3M

D-□

Construction: Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

MY3A

Component Parts

No.	Description	Material	Note
_ 1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover	Aluminum alloy	Hard anodized
3	Slide table	Aluminum alloy	Electroless nickel plated
4	Piston yoke	Stainless steel	
5	Piston	Polyamide	
6	Wear ring	Polyacetal	
7	Belt clamp	Polybutylene terephthalate	
8	Belt separator	Polyacetal	
11	Stopper	Carbon steel	Electroless nickel plated

No.	Description	Material	Note
12	Seal ring	Aluminum alloy	Anodized
13	Bearing	Polyacetal	
17	Inner wiper	Special resin	
18	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
19	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
20	Hexagon socket head set screw	Chrome molybdenum steel	Chromated
21	Hexagon socket head plug	Carbon steel	Chromated
23	Magnet	_	
24	Seal magnet	Rubber magnet	

Replacement Parts/Seal

No.	Description	Material	Qty.	MY3A16	MY3A20	MY3A25	MY3A32	MY3A40	MY3A50	MY3A63
9	Seal belt	Urethane Polyamide	1	MY3A16-16C- Stroke	MY3A20-16C- Stroke	MY3A25-16C- Stroke	MY3A32-16C- Stroke	MY3A40-16C- Stroke	MY3A50-16C- Stroke	MY3A63-16A- Stroke
10	Dust seal band	Stainless steel	1	MY3A16-16B- Stroke	MY3A20-16B- Stroke	MY3A25-16B- Stroke	MY3A32-16B- Stroke	MY3A40-16B- Stroke	MY3A50-16B- Stroke	MY3A63-16B- Stroke
16	Scraper	Polyamide	1	MYA16-15- R6656	MYA20-15- AC594	MYA25-15- R6657	MYA32-15- AC595	MYA40-15- R6658	MYA50-15- AC596	MYA63-15- R6659
14	Gasket bumper	NBR	2							
15	Piston seal	NBR	2	MY3A16-PS	MY3A20-PS	MY3A25-PS	MY3A32-PS	MY3A40-PS	MY3A50-PS	MY3A63-PS
22	O-ring	NBR	4							

^{*} Seal kit includes 14, 15, and 22. Order the seal kit based on each bore size.

^{*} Seal kit includes a grease pack (10 g).

When ⓐ and ⓑ are shipped as single units, a grease pack is included (10 g per 1000 strokes). Order with the following part number when only the grease pack is needed.

Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

^{*} For instructions on how to replace replacement parts/seals, refer to the operation manual.

MY1B

MY1H

MY1B

MY1M

MY1C

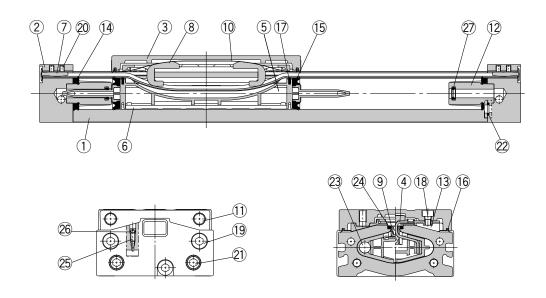
MY1H

MY1 HT

MY1 □W

MY2C

MY2 H/HT


MY3A MY3B

MY3M

D-□

Construction: Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

MY3B

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover	Aluminum alloy	Hard anodized
3	Slide table	Aluminum alloy	Electroless nickel plated
4	Piston yoke	Stainless steel	
5	Piston	Polyamide	
6	Wear ring	Polyacetal	
7	Belt clamp	Polybutylene terephthalate	
8	Belt separator	Polyacetal	
11	Stopper	Carbon steel	Electroless nickel plated
12	Cushion boss	Aluminum alloy	Chromated
13	Bearing	Polyacetal	

No.	Description	Material	Note
17	Inner wiper	Special resin	
18	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
19	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
20	Hexagon socket head set screw	Chrome molybdenum steel	Chromated
21	Hexagon socket head plug	Carbon steel	Chromated
23	Magnet		
24	Seal magnet	Rubber magnet	
25	Cushion needle	Rolled steel	Nickel plated

Replacement Parts/Seal

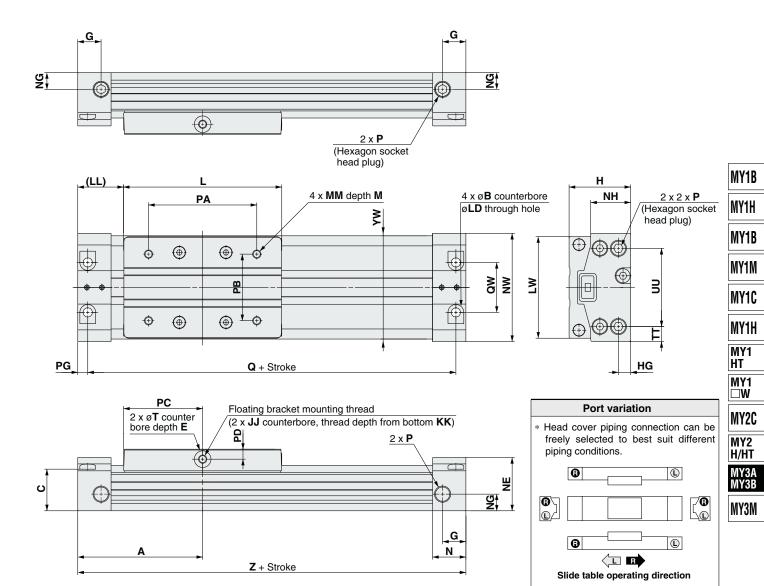
No.	Description	Material	Qty.	MY3B16	MY3B20	MY3B25	MY3B32	MY3B40	MY3B50	MY3B63	
9	Seal belt	Urethane Polyamide	1	MY3B16-16C- Stroke	MY3B20-16C- Stroke	MY3B25-16C- Stroke	MY3B32-16C- Stroke	MY3B40-16C- Stroke	MY3B50-16C- Stroke	MY3B63-16A- Stroke	
10	Dust seal band	Stainless steel	1	MY3B16-16B- Stroke	MY3B20-16B- Stroke	MY3B25-16B- Stroke	MY3B32-16B- Stroke	MY3B40-16B- Stroke	MY3B50-16B- Stroke	MY3B63-16B- Stroke	
16	Scraper	Polyamide	1	MYA16-15- R6656	MYA20-15- AC594	MYA25-15- R6657	MYA32-15- AC595	MYA40-15- R6658	MYA50-15- AC596	MYA63-15- R6659	
26	O-rina	NBR 2	NBR 2	NRR 2	KA00309	KA00309	KA00309	KA00309	KA00320	KA00320	KA00402
20	O-rilig			(ø4 x ø1.8 x ø1.1)	(ø7.15 x ø3.75 x ø1.7)	(ø7.15 x ø3.75 x ø1.7)	(ø8.3 x ø4.5 x ø1.9)				
14	Tube gasket	NBR	2								
15	Piston seal	NBR	2	MY3B16-PS	MY3B20-PS	MY3B25-PS	MY3B32-PS	MY3B40-PS	MY3B50-PS	MY3B63-PS	
22	O-ring	NBR	4	W113D10-F3	W113D20-F3	WIT3D25-F3	WIT3D32-F3	WI13540-F3	WIT 3D30-F3	W113003-F3	
27	Cushion seal	NBR	2								

^{*} Seal kit includes (4), (5), (2) and (2). Order the seal kit based on each bore size.

^{*} For instructions on how to replace replacement parts/seals, refer to the operation manual.

^{*} Seal kit includes a grease pack (10 g).

When 9 and 10 are shipped as single units, a grease pack is included (10 g per 1000 strokes).


Order with the following part number when only the grease pack is needed.

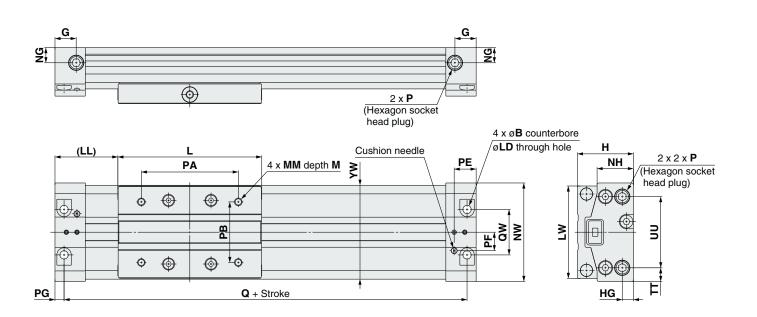
Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

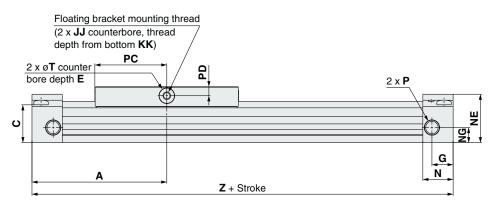
Short Type: Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

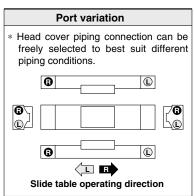
MY3A Bore size - Stroke

* Refer to "Specific Product Precautions" on page 1453 for mounting.

																(mm)
Model	Α	В	С	E	G	Н	HG	JJ	KK	L	LD	LL	LW	М	ММ	N
MY3A16	55	6	18	2	9.5	27	5	M4 x 0.7	5	65	3.5	22.5	41	6	M4 x 0.7	13.5
MY3A20	64	7.5	22	2	9.5	32	6.5	M4 x 0.7	8.5	80	4.5	24	51	6	M4 x 0.7	15.5
MY3A25	75	9.5	25	2	14	37	7.4	M5 x 0.8	7.5	95	5.5	27.5	61	8	M5 x 0.8	20
MY3A32	96.5	11	32.5	2	14	45	9	M5 x 0.8	7.5	128	6.6	32.5	76	8	M5 x 0.8	22.5
MY3A40	120	14	38	2	18	54	12	M6 x 1	12	160	8.6	40	90	12	M6 x 1	27
MY3A50	137	14	49	3	16	67	14	M6 x 1	15.5	190	9	42	112	12	M6 x 1	27
MY3A63	160	17	60	3	20.5	84	16.5	M8 x 1.25	22	220	11	50	134	16	M8 x 1.25	31


Model	NE	NG	NH	NW	Р	PA	PB	PC	PD	PG	Q	QW	Т	TT	UU	YW	Z
MY3A16	22.5	8	17.2	43	M5 x 0.8	44	26	32.5	4	4	102	19	7	6.5	30	42	110
MY3A20	27.5	10	20.8	53	M5 x 0.8	54	30	40	5	4.5	119	23	8	9	35	52	128
MY3A25	32	10	24	65	Rc, NPT, G1/8	64	40	47.5	6	6	138	30	10	9	47	62	150
MY3A32	39	14	31	79	Rc, NPT, G1/8	92	44	64	6	7	179	33	10	13.5	52	77	193
MY3A40	46	15	37	94	Rc, NPT, G1/4	112	60	80	7.5	8.5	223	40	14	14	66	92	240
MY3A50	58	25	47.5	116	Rc, NPT, G3/8	142	66	95	8.5	8.5	257	44	15	21	74	114	274
MY3A63	70	29	58	139	Rc, NPT, G3/8	162	84	110	10	10	300	64	16	20	99	136	320




Standard Type: Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

MY3B Bore size - Stroke

* Refer to "Specific Product Precautions" on page 1453 for mounting.

																(mm)
Model	Α	В	С	E	G	Н	HG	JJ	KK	L	LD	LL	LW	М	MM	N
MY3B16	61	6	18	2	9.5	27	5	M4 x 0.7	5	65	3.5	28.5	41	6	M4 x 0.7	13.5
MY3B20	74	7.5	22	2	9.5	32	6.5	M4 x 0.7	8.5	80	4.5	34	51	6	M4 x 0.7	15.5
MY3B25	89	9.5	25	2	14	37	7.4	M5 x 0.8	7.5	95	5.5	41.5	61	8	M5 x 0.8	20
MY3B32	112.5	11	32.5	2	14	45	9	M5 x 0.8	7.5	128	6.6	48.5	76	8	M5 x 0.8	22.5
MY3B40	138	14	38	2	18	54	12	M6 x 1	12	160	8.6	58	90	12	M6 x 1	27
MY3B50	155	14	49	3	16	67	14	M6 x 1	15.5	190	9	60	112	12	M6 x 1	27
MY3B63	178	17	60	3	20.5	84	16.5	M8 x 1.25	22	220	11	68	134	16	M8 x 1.25	31


Model	NE	NG	NH	NW	P	PA	PB	PC	PD	PE	PF	PG	Q	QW	Т	TT	UU	YW	Z
MY3B16	22.5	8	17.2	43	M5 x 0.8	44	26	32.5	4	9.7	8.5	4	114	19	7	6.5	30	42	122
MY3B20	27.5	10	20.8	53	M5 x 0.8	54	30	40	5	11.2	10	4.5	139	23	8	9	35	52	148
MY3B25	32	10	24	65	Rc, NPT, G1/8	64	40	47.5	6	14.5	12.2	6	166	30	10	9	47	62	178
MY3B32	39	14	31	79	Rc, NPT, G1/8	92	44	64	6	16	15	7	211	33	10	13.5	52	77	225
MY3B40	46	15	37	94	Rc, NPT, G1/4	112	60	80	7.5	19.5	16.5	8.5	259	40	14	14	66	92	276
MY3B50	58	25	47.5	116	Rc, NPT, G3/8	142	66	95	8.5	20.5	20	8.5	293	44	15	21	74	114	310
MY3B63	70	29	58	139	Rc, NPT, G3/8	162	84	110	10	23.5	27.5	10	336	64	16	20	99	136	356

Standard Type: Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

Stroke adjustment unit

Low load shock absorber + Adjustment bolt

MY3B Bore size - Stroke L

												(11111)
Applicable cylinder	ES	EC	EY	FC	h	S	SD	TS	TR	TU	W	Shock absorber model
MY3B16	14.1	21.5	26.5	34.5	2.4	40.8	25.8	6	0.9	25	62	RB0806
MY3B20	14.1	26.5	31.5	41	2.4	40.8	22.3	6	4.4	21.5	72	RB0806
MY3B25	20.1	29.8	36.5	51.5	3.6	46.7	25.2	7	1.4	28.5	90	RB1007
MY3B32	20.1	37.5	44.5	60	3.6	46.7	20.7	7	5.9	24	105	RB1007
MY3B40	30.1	45	53.5	72.5	5	67.3	36.3	12	0.9	39	128	RB1412
MY3B50	30.1	56.5	66.5	88	5	67.3	34.3	12	2.9	37	150	RB1412
MY3B63	36.1	70.5	83.5	108	6	73.2	36.2	15	0.9	43	178	RB2015

Note) When the stroke adjustment unit is used, the fitting type, which can be connected with the port on the body front and the back, will be limited. Refer to page 1411 for details.

Heavy-loaded shock absorber + Adjustment bolt

Stroke adjustment unit

MY3B Bore size — Stroke H

(Shock absorber stroke) TS S
ES SD
EC

TU

												(mm)
Applicable cylinder	ES	EC	EY	FC	h	S	SD	TS	TR	TU	W	Shock absorber model
MY3B16	14.1	23	29.5	34.5	2.4	46.7	31.7	7	0.9	25	62	RB1007
MY3B20	14.1	27.5	34	41	2.4	46.7	28.2	7	4.4	21.5	72	RB1007
MY3B25	20.1	31.8	41	52.2	3.6	67.3	45.8	12	1.4	28.5	90	RB1412
MY3B32	20.1	39.5	49	60.5	3.6	67.3	41.3	12	5.9	24	105	RB1412
MY3B40	30.1	48	60.5	73.5	5	73.2	42.2	15	0.9	39	128	RB2015
MY3B50	30.1	58.5	71	88.5	5	73.2	40.2	15	2.9	37	150	RB2015
MY3B63	36.1	74.5	91	108	6	99	62	25	0.9	43	178	RB2725

TR

Note) When the stroke adjustment unit is used, the fitting type, which can be connected with the port on the body front and the back, will be limited. Refer to page 1411 for details.

MY1B MY1H

MY1B

MY1M

MY1C

MY1H

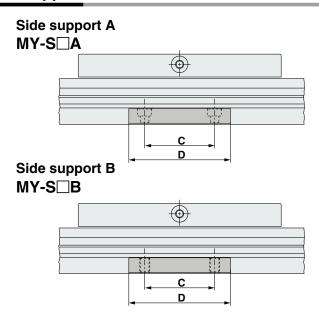
MY1 HT

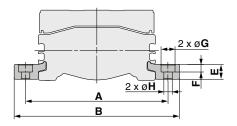
MY1

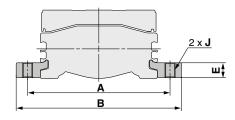
□W MY2C

MY2 H/HT

MY3A MY3B

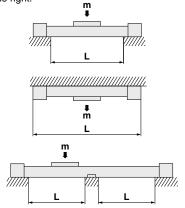

MY3M




D-□

-X□

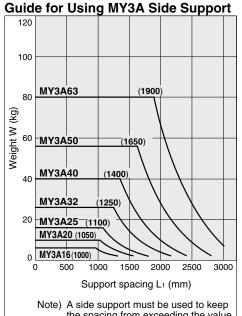
Side Support

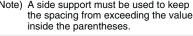


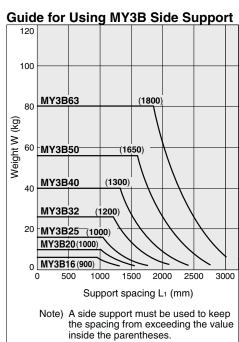
										(mm)
Model	Applicable cylinder	Α	В	С	D	E	F	G	Н	J
MY-S16 Å	MY3A16·MY3B16	53	63.6	15	26	4.9	3	6.5	3.4	M4 x 0.7
MY3-S20 A	MY3A20·MY3B20	65	77.6	25	38	5.9	3.5	8	4.5	M5 x 0.8
MY-S25 A	MY3A25·MY3B25	77	91	35	50	8	5	9.5	5.5	M6 x 1
MY-S32 A	MY3A32·MY3B32	97	115	45	64	11.7	6	11	6.6	M8 x 1.25
W 1-332 B	MY3A40·MY3B40	112	130	40	04	11.7	O	11	0.0	1010 X 1.25
MY-S50 A	MY3A50·MY3B50	138	160	55	80	14.8	8.5	14	9	M10 x 1.5
IVI 1-330 B	MY3A63-MY3B63	160	182	55	60	14.0	0.5	14	9	WITO X 1.5

Note) A set of side supports consists of a left support and a right support.

Guide for Using Side Support

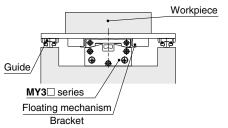

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.



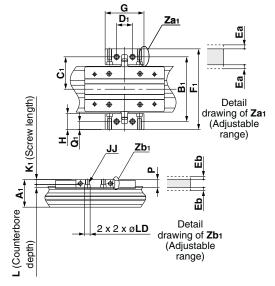

⚠ Caution

If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.

② Support brackets are not for mounting; use them solely for providing support.

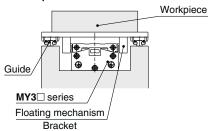

Mechanically Jointed Rodless Cylinders MY3A/3B Series

Floating Bracket

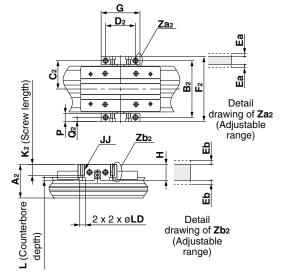

Facilitates connection to other guide systems.

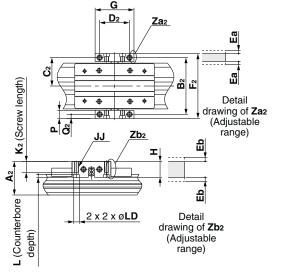
Application

Mounting direction (1) (to minimize the installation height)



Mounting Example




Application

Mounting direction 2 (to minimize the installation width)

Mounting Example

MY3 Floating Bracket Mounting Dimensions

	outing D	Idon	OC 1111C	January Di		,,,,,,,			
Maralal	Applicable			Commo	n			Adjustme	ent range
Model	cylinder	G	Н	J	L	Р	LD	Ea	Eb
MYAJ16	MY3□16	38	20	M4 x 0.7	4.5	10	6	1	1
MYAJ20	MY3□20	50	21	M4 x 0.7	4	10	6.5	1	1
MYAJ25	MY3□25	55	22	M6 x 1	5.5	12	9.5	1	1
MYAJ32	MY3□32	60	22	M6 x 1	5.5	12	9.5	1	1

									(mm)
NAI - I	Applicable			Commo	า			Adjustme	ent range
Model	cylinder	G	Н	JJ	L	Р	LD	Ea	Eb
MYAJ40	MY3□40	72	32	M8 x 1.25	6.5	16	11	1	1
MYAJ50	MY3□50	90	36	M8 x 1.25	6.5	16	11	1	1
MYAJ63	MY3□63	100	40	M10 x 1.5	9	19	14	1	1

Вı

130

114

136

166

56

68

81

100

NAI-I	Applicable			Mount	ing direc	tion ①		
Model	cylinder	A 1	B ₁	C ₁	D ₁	F1	K 1	Q ₁
MYAJ16	MY3□16	29	68	34	18	88	5.5	10
MYAJ20	MY3□20	34	81	40.5	20	102	6	10.5
MYAJ25	MY3□25	38.5	90	45	24	112	6.5	11
MYAJ32	MY3□32	47	106	53	30	128	6.5	11

Mar alad	Applicable			Mount	ing direc	tion ②			NAI - I	Applicable	
Model	cylinder	A 2	B ₂	C ₂	D ₂	F2	K ₂	Q2	Model	cylinder	
MYAJ16	MY3□16	36	58	29	30	68	10	5	MYAJ40	MY3□40	
MYAJ20	MY3□20	41	70	35	35	80	10	5	MYAJ50	MY3□50	
MYAJ25	MY3□25	46	80	40	40	92	14	6	MYAJ63	MY3□63	
MVΔ.132	MY3□32	54	96	48	46	108	14	6			_

	WITAGGG	MY3□63	86	186	93	50	226	10	20
_	Model	Applicable			Mount	ing direc	tion2		

C₁

65

57

68

83

Note) Floating brackets are shipped as a set of left and right brackets.

Tightening Torque								
for Holding Boits Unit: N·m								
Model	Tightening torque	Model	Tightening torque					
MYAJ16	1.5	MYAJ40	5					
MYAJ20	1.5	MYAJ50	5					
MYAJ25	3	MYAJ63	13					
MYAJ32	3							
	Model MYAJ16 MYAJ20 MYAJ25	for Holding Bolts Model Tightening torque MYAJ16 1.5 MYAJ20 1.5 MYAJ25 3	for Holding Bolts Model Model MYAJ16 1.5 MYAJ40 MYAJ20 1.5 MYAJ50 MYAJ25 3 MYAJ63					

Applicable

cylinder

MYAJ40 MY3□40

Model

MYAJ□ (1 set) Component Parts

Mounting direction 1

D₁

32

55

70

80

162

130

152

185

Component raits				
Description	Qty.			
Bracket	2			
Pin	2			
Conical spring washer	2			
Holding bolts	2			

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

MY1 HT

MY1

 \square W

MY2C

MY2 H/HT

MY3M

Q₁

16

8

8

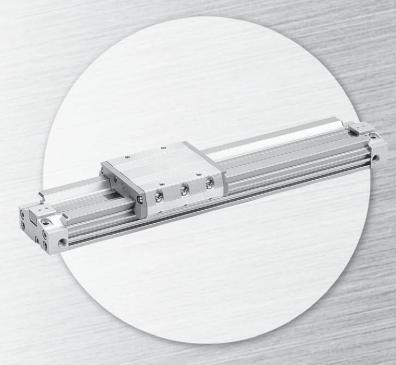
9.5

9.5

19

20

23



MY3M Series

Slide bearing guide type (Air cushion)

ø16, ø25, ø40, ø63

MY1B MY1H

MY1B

INITIB

MY1M

MY1C

MY1H MY1 HT

MY1 □W

MY2C MY2 H/HT

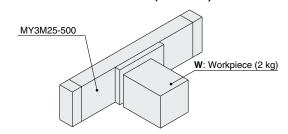
MY3A MY3B

MY3M

D-□

MY3M Series

Model Selection

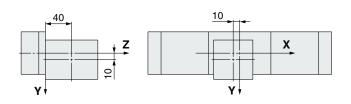

The following are steps for selecting the MY3 series which is best suited to your application.

Calculation of Guide Load Factor

SMC

1 Operating Conditions

Cushion ····· Air cushion ($\delta = 1/100$)



Refer to the pages mentioned above for actual examples of calculation for each orientation.

* For ceiling mounting, refer to page 1280.

2 Load Blocking

Workpiece Mass and Center of Gravity

Workpiece no.	Mass (m)	Center of gravity		
		X-axis	Y-axis	Z-axis
W	2 kg	10 mm	10 mm	40 mm

3 Calculation of Load Factor for Static Load

m3: Mass

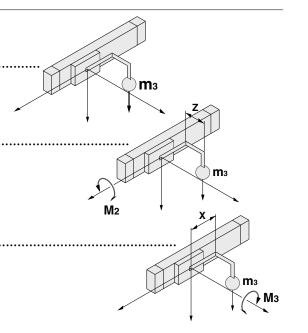
M3 max (from ① of graph MY3M / m₃) = 5.33 (kg)

Load factor $\alpha_1 = m_3 / m_3 max = 2 / 5.33 = 0.38$

M2: Moment

 M_2 max (from ② of graph MY3M / M_2) = 6 (N·m).....

 $M_2 = m_3 \times g \times Z = 2 \times 9.8 \times 40 \times 10^{-3} = 0.78 \text{ (N·m)}$


Load factor $\alpha_2 = M_2 / M_2 \text{ max} = 0.78 / 6 = 0.13$

M3: Moment

M₃ max (from ③ of graph MY3M / M_3) = 2.67 (N·m)......

 $M_3 = m_3 \times g \times X = 2 \times 9.8 \times 10 \times 10^{-3} = 0.2 \text{ (N·m)}$

Load factor $\alpha_3 = M_3 / M_3 \text{ max} = 0.2 / 2.67 = 0.07$

Calculation of Guide Load Factor

4 Calculation of Load Factor for Dynamic Moment

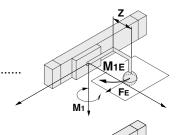
Equivalent load FE at impact

FE = 1.4
$$vax \delta x m x g = 1.4 x 300 x $\frac{1}{100} x 2 x 9.8 = 82.38 (N)$$$

M_{1E}: Moment

M₁E max (from 4) of graph MY3M/M₁ where $1.4 \text{ } \text{$0$} \text{a} = 420 \text{ } \text{mm/s}) = 7.62 \text{ } (\text{N} \cdot \text{m}) \cdots$

$$\mathbf{M}_{1E} = \frac{1}{3} \times \mathbf{F}_{E} \times \mathbf{Z} = \frac{1}{3} \times 82.38 \times 40 \times 10^{-3} = 1.10 \text{ (N·m)}$$


Load factor $0.4 = M_{1E} / M_{1E} max = 1.10 / 7.62 = 0.14$

M3E max (from \odot graph of MY3M/ \mathbf{M} 3 where 1.4 \mathbf{Va} = 420 mm/s) = 1.90 (N·m) ·············

M₃E =
$$\frac{1}{3}$$
 x **F**_E x **Y** = $\frac{1}{3}$ x 82.38 x 10 x 10⁻³ = 0.27 (N·m)

Load factor $\alpha_5 = M_{3E} / M_{3E} max = 0.27 / 1.90 = 0.14$

МзЕ

MY1H

MY1B

MY1M

MY1C

MY1H MY1

HT

MY1 □W

MY2C

MY2 H/HT

MY3A MY3B

MY3M

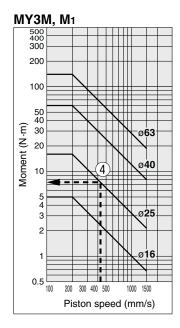
5 Sum and Examination of Guide Load Factors

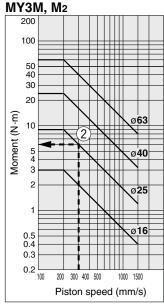
$$\Sigma \alpha = \Omega_1 + \Omega_2 + \Omega_3 + \Omega_4 + \Omega_5 = 0.87 \le 1$$

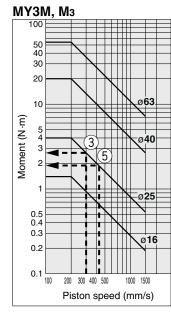
The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.

In an actual calculation, when the sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series. This calculation can be easily made using the "SMC Pneumatic CAD System".

Load Mass


мүзм, тз

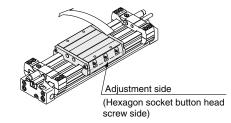

0.2


100 50 40 30 20 (by) ss 5 4 Beo 2 1 0.5 0.4 0.3

200 300 400 500 1000 1500 Piston speed (mm/s)

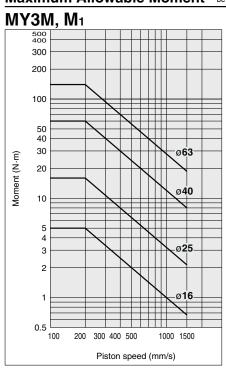
Allowable Moment

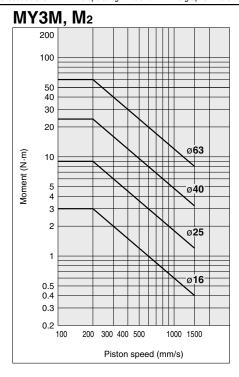
D-□

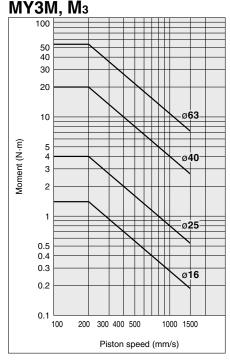

Technical Data

Maximum Allowable Moment / Maximum Allowable Load

Model	Bore size	Maximum a	llowable mo	ment (N•m)	Maximum allowable load (kg)			
Model	(mm)	M1	M2	Мз	m1	m ₂	mз	
	16	5	3	1.4	18	14	3	
MAYONA	25	16	9	4	38	36	8	
MY3M	40	60	24	20	84	81	20	
	63	140	60	54	180	163	40	

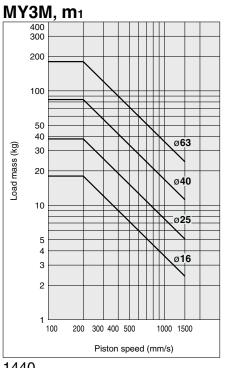

* We recommend that the static M2 moment direction should be as illustrated. Also, when using the product in a wall mount application (m₃ applied), we recommend that the mounting orientation of the adjustment side (hexagon socket head button bolt side) should be in the upper position.

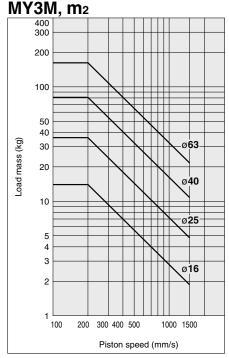

Recommended direction of applying M2 moment

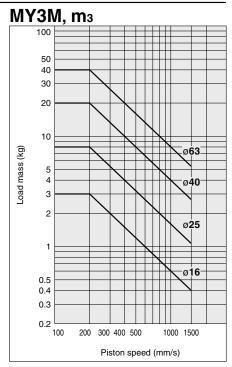


Maximum Allowable Moment

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.

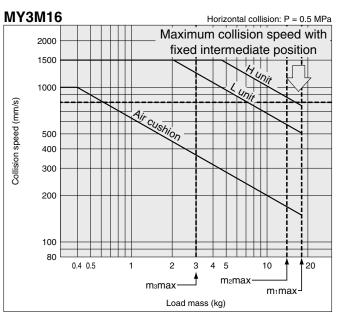




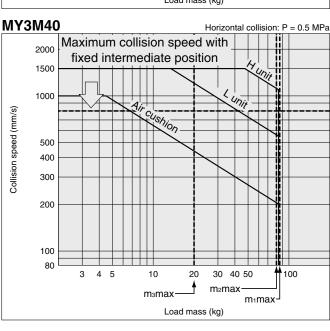


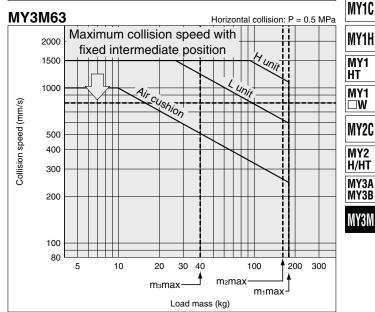
Maximum Allowable Load

Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.






Model Selection MY3M Series


Cushion Capacity

Absorption Capacity of Air Cushion and Stroke Adjustment Unit

Air Cushion Stroke

Air Cushion Strok	Unit: mm	
Bore size (mm)	Cushion stroke	
16	13	
25	18	
40	25	
63	30	

MY1B

MY1H

MY1B

MY1M

Cushion Capacity

Absorption Capacity of Air Cushion and Stroke Adjustment Unit

Calculation of Absorbed Energy for Stroke

Adjustment Unit with Built-in Shock Absorber Unit: N-m

Adjustifient Offit With Built-III Shock Absorber Unit: N·m								
	Horizontal	Vertical (Downward)	Vertical (Upward)					
Type of collision	m	v m	G+ S					
Kinetic energy E 1		$\frac{1}{2} \mathbf{m} \cdot \mathbf{v}^2$						
Thrust energy E 2	F∙s	F•s + m•g•s	F·s - m·g·s					
Absorbed energy E	E1 + E2							

Stroke Adjustment Unit Fine Stroke Adjustment Range

Unit: mm

Bore size (mm)	Fine stroke adjustment range
16	0 to -10
25	0 to -12
40	0 to -16
63	0 to -24

Note) The maximum operating speed will differ when the stroke adjustment unit with the spacer for intermediate securing is used outside the maximum fine stroke adjustment range (with reference to the fixed stroke end). (Refer to the graph on page 1441.)

Symbols

- υ: Speed of impacting object (m/s)
- m: Weight of impacting object (kg)
- F: Cylinder thrust (N)
- g: Gravitational acceleration (9.8 m/s²)
- s: Shock absorber stroke (m)

Note) The speed of the impacting object is measured at the time of collision with the shock absorber.

Stroke Adjustment

<Stroke adjustment of the adjustment bolt>

Loosen the lock nut for the adjustment bolt, adjust the stroke on the head cover side with a hexagon wrench, and secure with a lock nut.

<Stroke adjustment of the shock absorber>

Loosen the fixing bolts on the shock absorber side and rotate the shock absorber for stroke adjustment. Tighten the fixing bolts to secure the shock absorber. Use caution not to overtighten the fixing bolts.

(Refer to "Stroke Adjustment Unit Tightening Torque for Fixing Bolts.")

Stroke Adjustment Unit

Tightening Torque for Fixing Bolts

	•	
Bore size (mm)	Unit	Tightening torque
16	L	0.7
10	Н	0.7
25	L	2.5
23	Н	3.5
40	L	10.0
40	Н	13.8
62	L	07.5
63	Н	27.5

Shock Absorber

Tightening	Torque	e for	Fixina	Bolts

Unit: N·m

Unit: N.m.

Bore size (mm)	Unit	Tightening torque
16	L	0.6
16	Н	0.6
0E	L	1.5
25	Н	1.5
40	L	0.0
40	Н	3.0
62	L	F 0
63	Н	5.0

∧ Caution

1. Use caution not to have your hands caught in the unit.

When using a cylinder with stroke adjustment unit, the space between the slide table (slider) and the stroke adjustment unit is very narrow. Care should be taken to avoid the danger of hands being caught in this small space. Install a protective cover to prevent the risk of accidents to the human body.

⚠ Caution

2. The stroke adjustment unit may interfere with the mounting bolt when mounting the cylinder on the equipment.

Loosen the unit fixing bolt and dislocate the stroke adjustment unit before mounting the cylinder. After fixing the cylinder, move the stroke adjustment unit back to the desired location and tighten the unit fixing bolt.

Use caution not to overtighten the fixing bolts.

(Refer to "Stroke Adjustment Unit Tightening Torque for Fixing Bolts".)

3. When using the adjust bolt to perform stroke adjustment, fix the adjust bolt so that it is on the same side as the shock absorber.

Fix the adjust bolt on the same side as the shock absorber that was used for stroke adjustment.

If the shock absorber's stopper side and the front end of the adjust bolt are not on the same side, the slide table stopping position becomes unstable, and durability may drop.

4. Securing the unit body

Adjustment bolt lock nut

Absorber fixing bolt

Stroke adjustment unit fixing bolt

Shock absorber

Tighten the four unit fixing bolts equally to secure the unit body.

5. Do not fix and use the stroke adjustment unit at an intermediate position.

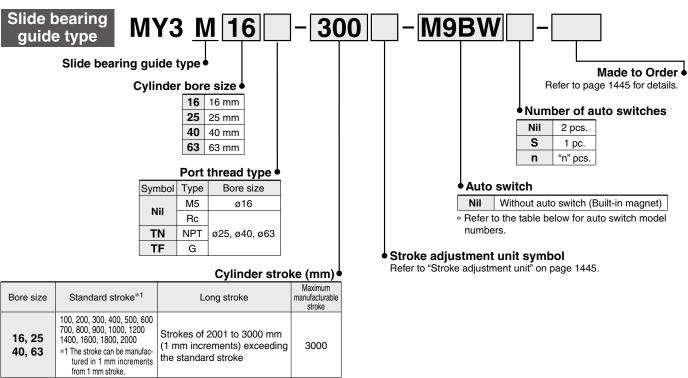
When the stroke adjustment unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In that case, use a short spacer or a long spacer. For other lengths, please consult with SMC.

(Refer to "Stroke Adjustment Unit Tightening Torque for Fixing Bolts.")

If the stroke adjustment unit is fixed at an intermediate position, the energy absorption capacity may be different. For this reason, refer to the maximum absorbed energy listed above, and use the adjustment unit within the allowable absorption capacity.

MY1B
MY1H
MY1B
MY1M
MY1C
MY1H
MY1H
MY1
HT
MY2C
MY2C
MY2C
MY2A
MY3A
MY3B

D-□


MY3M

Mechanically Jointed Rodless Cylinder Slide bearing guide type

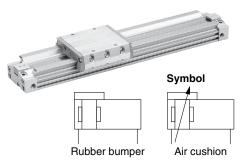
MY3M Series

Ø16, Ø25, Ø40, Ø63

How to Order

Ordering example

Applicable Auto Switches/Refer to pages 1575 to 1701 for further information on auto switches.


			ight		L	oad volta	ge	Auto swit	ch model	Lead	wire I	ength	n (m)																						
Type	Special function	Electrical entry	Indicator light	Wiring (Output)	D	С	AC	Perpendicular	In-line	0.5 (Nil)	1 (M)	3 (L)	5 (Z)	Pre-wired connector	Applical	ble load																			
				3-wire (NPN)		5 V, 12 V		M9NV	M9N	•	•	•	0	0	IC circuit																				
switch	_			3-wire (PNP)		5 V, 12 V		M9PV	M9P	•	•	•	0	0	ic circuit																				
swi				2-wire		12 V		M9BV	M9B	•	•	•	0	0	-																				
auto				3-wire (NPN)	24 V 5	24 V 5 V, 1	24 V 5 V, 12 V	[24 V 5 V, 12 V	5 V, 12 V		M9NWV	M9NW	•	•	•	0	0	IC circuit				
e aı	Diagnostic indication (2-color indicator)	Grommet	Yes	3-wire (PNP)							24 V	/ 3 V, 12 V	IV 3 V, 12 V	24 V 3 V, 12 V	5 V, 12 V	3 V, 12 V	3 V, 12 V	3 V, 12 V	3 V, 12 V	5 V, 12 V	5 V, 12 V	5 V, 12 V	3 V, 12 V			v, 12 v —	M9PWV	M9PW	•	•	•	0	0	io circuit	Relay, PLC
state	(2 color indicator)			2-wire																			l	12 V		M9BWV	M9BW	•	•	•	0	0		1 20	
s pi				3-wire (NPN)						5 V 10					EV 10 V		M9NAV*1	M9NA*1	0	0	•	0	0	IC circuit											
Solid	Water resistant (2-color indicator)			3-wire (PNP)			5 V, 12 V		M9PAV*1	M9PA*1	0	0	•	0	0	ic circuit																			
	(E obiot indidator)			2-wire		12 V		M9BAV*1	M9BA*1	0	0	•	0	0	-																				
eed switch			Yes	3-wire (NPN equiv.)	_	5 V	_	A96V	A96	•	-	•	_	_	IC circuit	_																			
Reed to swif	_	Grommet		0	04.1/	12 V	100 V	A93V*2	A93	•	•	•	•	_	_	Relay,																			
R _a			No	2-wire	24 V	12 V	100 V or less	A90V	A90		_	•	_	_	IC circuit	PLC																			

- *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.

 Consult with SMC regarding water resistant types with the above model numbers.
- *2 1 m type lead wire is only applicable to D-A93.
- * Lead wire length symbols: 0.5 m Nil (Example) M9NW
 - 1 m M (Example) M9NWM 3 m L (Example) M9NWL 5 m Z (Example) M9NWZ
- \ast Solid state auto switches marked with "O" are produced upon receipt of order.
- * Separate switch spacers (BMY3-016) are required for retrofitting of auto switches.
- * There are other applicable auto switches than listed above. For details, refer to page 1451.
- * Refer to pages 1648 to 1649 for the details of auto switches with a pre-wired connector.
- * Auto switches are shipped together (not assembled). (Refer to page 1451 for the details of auto switch mounting.)

^{*} Long stroke can be ordered the same as the standard stroke. MY3M20-3000L-M9BW Note) Please be advised that with stroke 49 or less, there are cases where auto switch mounting is not possible and the performance of the air cushion may decline.

Mechanically Jointed Rodless Cylinders MY3M Series

Made to Order: Individual Specifications (For details, refer to page 1452.)

Symbol	Specifications
-X168	Helical insert thread

Made to Order

Click here for details

Symbol	Specifications
	Shock absorber soft type RJ series type

Specifications

			40				
Bore size (mm)	16	25	63				
Fluid	Air						
Action	Double acting						
Operating pressure range	0.2 to 0.7 MPa	0.15 to 0.7 MPa					
Proof pressure	1.05 MPa						
Ambient and fluid temperature	5 to 60°C						
Cushion	Air cushion						
Lubrication	Not required (Non-lube)						
Stroke length tolerance	1000 mm or less ^{+1.8} ₀ , From 1001 mm ^{+2.8} ₀						
Port size (Rc, NPT, G)	M5 x 0.8	1/8	1/4	3/8			

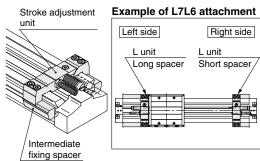
Piston Speed

Bore size (mm)	16	25	40	63	
Without stroke adjustment unit		80 to 10	00 mm/s		
Stroke adjustment unit (L and H unit)	80 to 1500 mm/s				
External shock absorber	80 to 1500 mm/s				

- * When the RB series is used, operate at a piston speed that will not exceed the absorption capacity of the air cushion and stroke adjustment unit.
- * Because of its structure, the fluctuation of this cylinder's operating speed is greater than rod type cylinders. For applications that require constant speed, select an applicable equipment for the level of demand.

Stroke Adjustment Unit Specifications

Bore size	(mm)	1	6	2	5	4	0	63	
Unit symbol	L	Н	L	Н	L	Н	L	Н	
Shock absorber model	RB0806	RB1007	RB1007	RB1412	RB1412	RB2015	RB2015	RB2725	
Shock absorber soft ty RJ series (-XB22) mod	RJ0806H	RJ1007H	RJ1007H	RJ1412H	RJ1412H	_	_	_	
Stroke adjustment	Without spacer	0 to -10		0 to -12		0 to	- 16	0 to -24	
range by intermediate	With short spacer	−10 t	o – 20	−12 t	o –24	-16 to -32		–24 t	o –48
fixing spacer (mm)	With long spacer	–20 t	o –30	−24 to −36		−32 to −48		–48 t	o –72


^{*} Stroke adjustment range is applicable for one side when mounted on a cylinder.

Stroke Adjustment Unit Symbol

				Right side stroke adjustment unit									
			Without	L: With lov + Adjustm	v load shock ent bolt	k absorber	H: With high load shock absorber + Adjustment bolt						
			unit		With short spacer	With long spacer		With short spacer	With long spacer				
	Without	unit	Nil	SL	SL6	SL7	SH	SH6	SH7				
i ke	L: With low l	oad shock absorber +	LS	L	LL6	LL7	LH	LH6	LH7				
stroke nt unit	Adjustment	With short spacer	L6S	L6L	L6	L6L7	L6H	L6H6	L6H7				
side st	bolt	With long spacer	L7S	L7L	L7L6	L7	L7H	L7H6	L7H7				
t si ust	H: With high	load shock absorber +	HS	HL	HL6	HL7	Н	HH6	HH7				
Lef	Adjustment	With short spacer	H6S	H6L	H6L6	H6L7	Н6Н	H6	Н6Н7				
	bolt	With long spacer	H7S	H7L	H7L6	H7L7	Н7Н	H7H6	H7				

 $[\]ast$ Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

Stroke adjustment unit mounting diagram

Shock Absorber Specifications

Т	уре	RB 0806	RB 1007	RB 1412	RB 2015	RB 2725				
Max. energy	absorption (J)	2.9	5.9	19.6	58.8	147				
Stroke abs	orption (mm)	6	7	12	15	25				
Max. collisio	n speed (mm/s)	1500								
Max. operating f	requency (cycle/min)	80	80 70 45 25 10							
Spring	Spring Extended		4.22	6.86	8.34	8.83				
force (N)	Compressed	4.22	6.86	15.98	20.50	20.01				
Operating tem	perature range (°C)	5 to 60								

Note) The shock absorber service life is different from that of the MY3M cylinders depending on operating conditions. Allowable operating cycle under the specifications set in this catalog is shown below.

1.2 million times RB08□□ 2 million times RB10□□ to RB2725

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

Technical

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H
MY1
HT
MY1
WY2C

MY2 H/HT

MY3A MY3B

MY3M

1445 ©

MY3M Series

Theoretical Output

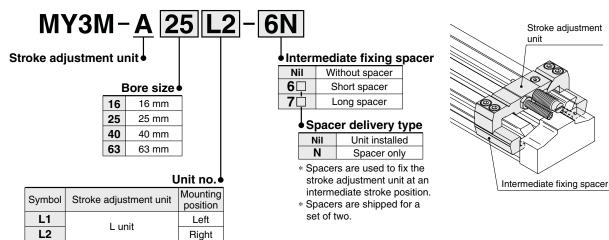
								Unit: N					
Bore size	Piston		Operating pressure (MPa)										
(mm)	area (mm²)	0.2	0.3	0.4	0.5	0.6	0.7	8.0					
16	200	40	60	80	100	120	140	160					
25	490	98	147	196	245	294	343	392					
40	1256	251	377	502	628	754	879	1005					
63	3115	623	934	1246	1557	1869	2180	2492					

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm 2)

Weight

						Unit: kg
Model	Bore size	Basic	Additional weight	Weight of	,	ent unit weight unit)
	(mm)	weight	per 50 mm stroke	moving parts	L unit weight	H unit weight
	16	0.29	0.08	0.13	0.05	0.06
МҮЗМ	25	0.90	0.15	0.35	0.12	0.17
IVI Y SIVI	40	3.03	0.31	1.14	0.34	0.43
	63	8.63	0.68	2.96	0.69	0.91

Calculation method/Example: MY3M25-400H


Basic weight 0.90 kg

Cylinder stroke 400 st

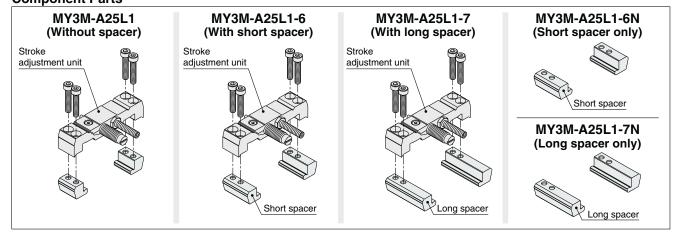
Additional weight 0.15/50 st H unit weight 0.17 kg $0.90+0.15\times400\div50+0.17\times2\approx2.44\text{ kg}$

Option

Stroke Adjustment Unit Part No.

Note) Refer to page 1430 for details about adjustment range.

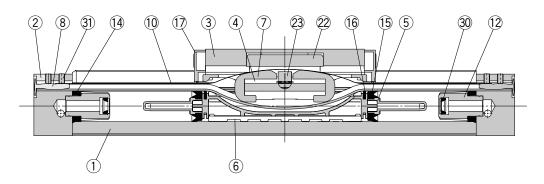
H unit

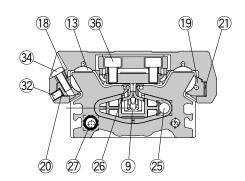

Left

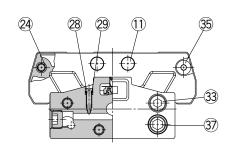
Right

Component Parts

H1


H2




Mechanically Jointed Rodless Cylinders MY3M Series

Construction

MY3M

Component Parts

	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover	Aluminum alloy	Hard anodized
3	Slide table	Aluminum alloy	Hard anodized
4	Piston yoke	Stainless steel	
5	Piston	Polyamide	
6	Wear ring	Polyacetal	
7	Belt separator	Polyacetal	_
8	Belt clamp	Polybutylene terephthalate	
11	Stopper	Carbon steel	Nickel plated
12	Cushion boss	Aluminum alloy	Chromated
13	Bearing	Polyacetal	
16	Inner wiper	Special resin	
17	End cover	Polyamide	
18	Adjust arm A	Aluminum alloy	Chromated
19	Adjust arm B	Aluminum alloy	Chromated

No.	Description	Material	Note
20	Backup spring	Stainless steel	
21	Bearing adjustment rubber	NBR	
22	Coupler body	Aluminum alloy	Hard anodized
23	Coupler pin	Carbon steel	Electroless nickel plated
24	Spacer	Stainless steel	
25	Magnet	_	
26	Seal magnet	Rubber magnet	
28	Cushion needle	Rolled steel	Nickel plated
31	Hexagon socket head set screw	Chrome molybdenum steel	Chromated
32	Hexagon socket head set screw	Chrome molybdenum steel	Chromated
33	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
34	Hexagon socket button head screw	Chrome molybdenum steel	Chromated
35	Hexagon socket button head screw	Chrome molybdenum steel	Chromated
36	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
37	Hexagon socket head plug	Carbon steel	Chromated
	Hexagon socket head plug	Carbon steel	Unromated

Replacement Parts/Seal

nep	iacement Parts	5/ Sea	l II				
No.	Description	Material	Qty.	MY3M16	MY3M25	MY3M40	MY3M63
9	Seal belt	Urethane Polyamide		MY3B16-16C-Stroke	MY3B25-16C-Stroke	MY3B40-16C-Stroke	MY3B63-16A-Stroke
10	Dust seal band	Stainless steel	1	MY3B16-16B-Stroke	MY3B25-16B-Stroke	MY3B40-16B-Stroke	MY3B63-16B-Stroke
29	00 0 rim r		2	KA00309	KA00309	KA00320	KA00402
29	O-ring	NBR		(ø4 x ø1.8 x ø1.1)	(ø4 x ø1.8 x ø1.1)	(ø7.15 x ø3.75 x ø1.7)	(ø8.3 x ø4.5 x ø1.9)
14	Tube gasket	NBR	2				
15	Piston seal NBF		2	MY3B16-PS	MY3B25-PS	MY3B40-PS	MY3B63-PS
27	7 O-ring		4	WIT3616-P3	WI 13625-P3	W 13640-P3	WIT 3003-P3
30	30 Cushion seal N		2				

^{*} Seal kit includes 4, 5, 2 and 3. Order the seal kit based on each bore size.

Order with the following part number when only the grease pack is needed.

Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

^{*} For instructions on how to replace replacement parts/seals, refer to the operation manual.

MY1H

MY1B

MY1B

MY1M

MY1C

MY1H MY1 HT

MY1 □W

MY2C MY2 H/HT

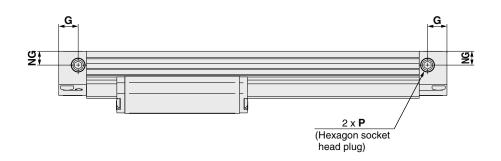
MY3A MY3B

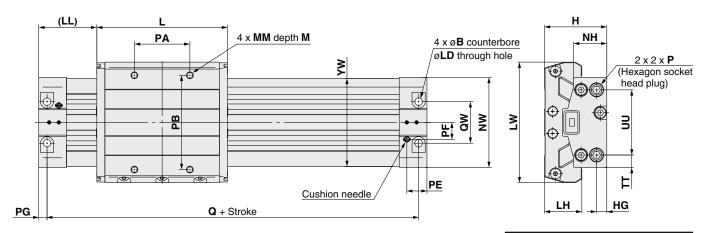
MY3M

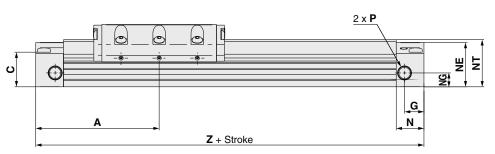
D-

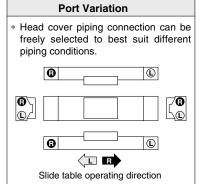
-X□

Technical Data

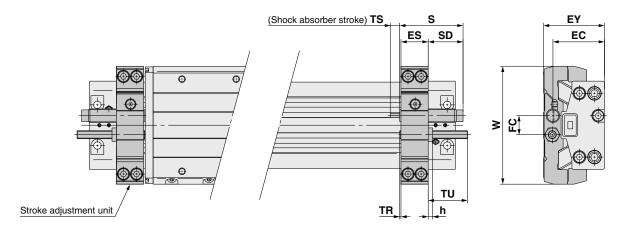

^{*} Seal kit includes a grease pack (10 g).


When (9) and (10) are shipped as single units, a grease pack is included (10 g per 1000 strokes).


Slide Bearing Guide Type: $\emptyset 16$, $\emptyset 25$, $\emptyset 40$, $\emptyset 63$


MY3M Bore size — Stroke

* Refer to "Specific Product Precautions" on page 1453 for mounting.

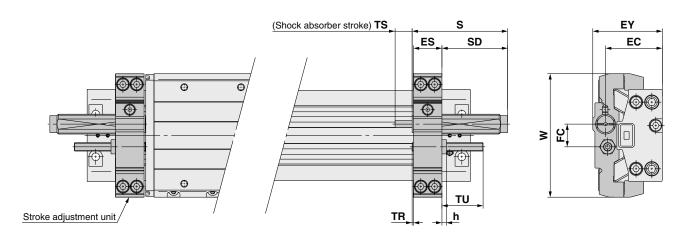

																(mm)
Model	Α	В	С	G	Н	HG	L	LD	LH	LL	LW	M	MM	N	NE	NG
MY3M16	61	6	18	9.5	33	5	65	3.5	20.5	28.5	64	6	M4 x 0.7	13.5	22.5	8
MY3M25	89	9.5	25	14	45	7.4	95	5.5	27	41.5	87	10	M5 x 0.8	20	32	10
MY3M40	138	14	38	18	63	12	160	8.6	35	58	124	13	M6 x 1.0	27	46	15
MY3M63	178	17	60	20.5	93	16.5	220	11	46	68	176	15	M10 x 1.5	31	70	29
Model	NH	NT	NW	F	•	PA	PB	PE	PF	PG	Q	QW	TT	UU	YW	Z
MY3M16	17.2	24	43	M5 x	x 0.8	28	48	9.7	8.5	4	114	19	6.5	30	44.6	122
MY3M25	24	34	65	Rc, NP	T, G1/8	40	68	14.5	12.2	6	166	30	9	47	63.6	178
MY3M40	37	49	94	Rc, NP	T, G1/4	100	100	19.5	16.5	8.5	259	40	14	66	93.6	276
MY3M63	58	76	139	Rc, NP	T, G3/8	130	150	23.5	27.5	10	336	64	20	99	138	356

Slide Bearing Guide Type: Ø16, Ø25, Ø40, Ø63

Stroke adjustment unit

Low load shock absorber + Adjustment bolt

MY3M Bore size - Stroke L



												(11111)
Applicable cylinder	ES	EC	EY	FC	h	S	SD	TS	TR	TU	W	Shock absorber model
MY3M16	14.1	27.5	32.5	9	2.4	40.8	25.8	6	0.9	25	64	RB0806
MY3M25	20.1	38	44.5	14	3.6	46.7	25.2	7	1.4	28.5	87	RB1007
MY3M40	30.1	54	62.5	24	5	67.3	36.3	12	0.9	39	124	RB1412
MY3M63	36.1	81	92.5	32	6	73.2	36.2	15	0.9	43	176	RB2015

Note) When the stroke adjustment unit is used, the fitting type, which can be connected with the port on the body front and the back, will be limited. Refer to page 1411 for details.

Heavy-loaded shock absorber + Adjustment bolt

MY3M Bore size - Stroke H

												(mm)
Applicable cylinder	ES	EC	EY	FC	h	S	SD	TS	TR	TU	W	Shock absorber model
MY3M16	14.1	28.5	34.5	11	2.4	46.7	31.7	7	0.9	25	64	RB1007
MY3M25	20.1	40	49	16	3.6	67.3	45.8	12	1.4	28.5	87	RB1412
MY3M40	30.1	57	69	26	5	73.2	42.2	15	0.9	39	124	RB2015
MY3M63	36.1	84.5	100	32	6	99	62	25	0.9	43	176	RB2725

Note) When the stroke adjustment unit is used, the fitting type, which can be connected with the port on the body front and the back, will be limited. Refer to page 1411 for details.

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H MY1 HT

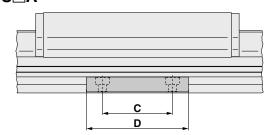
MY1 □W

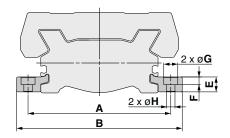
MY2C

MY2 H/HT

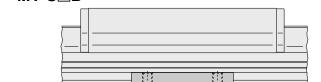
MY3A MY3B

MY3M

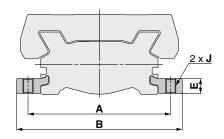

(mm)



MY3M Series

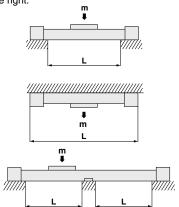

Side Support

Side support A MY-S□A



Side support B MY-S□B

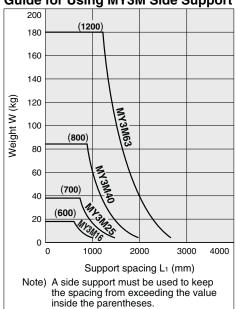
C D



										(mm)
Model	Applicable cylinder	Α	В	С	D	E	F	G	Н	J
MY-S16 A	MY3M16	53	63.6	15	26	4.9	3	6.5	3.4	M4 x 0.7
MY-S25 A	MY3M25	77	91	35	50	8	5	9.5	5.5	M6 x 1
MY-S32 A	MY3M40	112	130	45	64	11.7	6	11	6.6	M8 x 1.25
MY-S50 A	MY3M63	160	182	55	80	14.8	8.5	14	9	M10 x 1.5

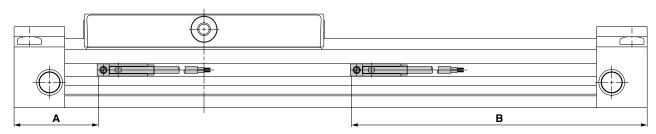
Note) A set of side supports consists of a left support and a right support.

Guide for Using Side Support


For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (L) of the support must be no more than the values shown in the graph on the right.

A Caution

- ① If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- ② Support brackets are not for mounting; use them solely for providing support.


Guide for Using MY3M Side Support

MY3 Series

Auto Switch Specifications

Auto Switch Proper Mounting Position (at Stroke End Detection)

Auto Switch Proper Mounting Position MV3V

IVI I JA				(111111)	
Auto switch model	D-M9□ D-M9□V D-M9□W D-M9□WV D-M9□A D-M9□AV		D-A9□ D-A9□V		
Bore size	Α	В	Α	В	
16	26	84	22	88	
20	26	102	22	106	
25	33	117	29	121	
32	40.5	152.5	36.5	156.5	
40	46.5	193.5	42.5	197.5	
50	47	227	43	231	
63	57.5	262.5	53.5	266.5	

Note) The values in the table indicate the position of the auto switch's front end. Adjust the auto switch after confirming the operating conditions in

MY3B/MY3M

63

Auto switch model	D-M9□ D-M9□V D-M9□W D-M9□WV D-M9□A D-M9□AV		D-A9□ D-A9□V		
Bore size	Α	В	Α	В	
16	32	90	28	94	
20	36	112	32	116	
25	47	131	43	135	
32	56.5	168.5	52.5	172.5	
40	64.5	211.5	60.5	215.5	
50	65	245	61	249	

Operating Range

							(mm)
Auto switch model	Bore size						
	16	20	25	32	40	50	63
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	3.5	5	6	6.5	8	8	8
D-A9□/A9□V	6.5	9.5	10.5	12	15	13.5	14

* Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed. (Assuming approximately ±30% dispersion.) It may vary substantially depending on an ambient environment.

Auto Switch Mounting

When mounting an auto switch, first hold the switch spacer with your fingers and push it into the groove. Confirm that it is aligned evenly within the groove and adjust the position if necessary. Then, insert the auto switch into the groove and slide it into the spacer.

After deciding on the mounting position within the groove, slip in the mounting screw, which is included, and tighten it, using a flat head watchmaker's screw driver.

6 Switch spacer (BMY3-016) (Not included)

Switch mounting screw (Accessory for switch) (M2.5 x 4 L)

Flat head watchmaker's screw driver

Note) Use a watchmaker's screw driver with a handle diameter of 5 to 6 mm to fasten the auto switch mounting screws.

The tightening torque should be approximately 0.1 to 0.15 N·m.

Switch Spacer (mm) Applicable bore size (mm) 32 40 Switch spacer BMY3-016

Besides the models listed in How to Order, the following auto switches are applicable.

- For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to pages 1648 and 1649 for details.
- * Normally closed (NC = b contact) solid state auto switches (D-M9□E(V)) are also available. Refer to page 1592-1 for details.

-X□

(mm)

284.5

MY1B

MY1H

MY1B

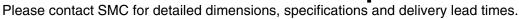
MY1M

MY1C

MY1H

MY1

MY1

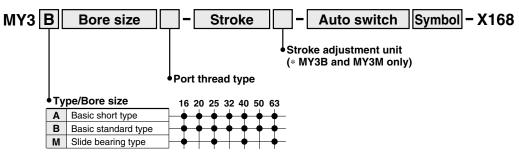

 \square W MY2C

H/HT

MY3M

MY3 Series

Made to Order: Individual Specifications



1 Helical Insert Threads

-X168

The mounting threads of the slider are changed to helical insert threads. The thread size is the same as standard.

Example) MY3B16-300L-M9B-X168

MY3 Series

Specific Product Precautions

Be sure to read this before handling the products.

Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Selection

. Marning

1. When applying a load directly, set the design so that all the mounting threads on the slide table's upper surface are used.

Parts have been made smaller to achieve a compact size. If only some of the threads are used when mounting the load, the impact that results from the operation may cause extremely concentrated stress or disfiguration and may negatively affect operation.

In worst cases the cylinder may be damaged, so please be careful.

⚠ Caution

1. Provide intermediate supports for long stroke cylinders.

Provide intermediate supports for cylinders with long strokes to prevent rod damage due to sagging of the rod, deflection of the tube, vibration and external loads.

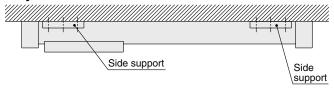
For detailed information, please refer to "Guide for Using Side Support" on pages 1434 and 1450.

2. For intermediate stops, use a dual-side pressure control circuit.

Since the mechanically jointed rodless cylinders have a unique seal structure, slight external leakage may occur. Controlling intermediate stops with a 3 position valve cannot hold the stopping position of the slide table (slider). The speed at the restarting state also may not be controllable. Use the dual-side pressure control circuit with a PAB-connected 3 position valve for intermediate stops.

3. Cautions on less frequent operation

When the cylinder is used extremely infrequently, operation may be interrupted in order for anchoring and a change lubrication to be performed or service life may be reduced.


Mounting

⚠ Caution

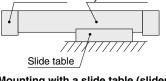
1. At each end of the cylinder, secure a mounting surface with a 5 mm or longer area that contacts the lower side of the cylinder.

 If the cylinder is mounted on the ceiling or wall under the condition where high load factors or impacts are expected, use side supports, in addition to the fixing bolts on the head cover, to support both ends of the cylinder tube.

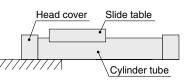
Mounting

⚠ Caution

3. Do not mount a slide table on the fixed equipment surface.


Head cover Cylinder tube

It may cause damage or malfunctions since an excessive load is applied to the bearing.


4. Consult with SMC when mounting in a cantilevered way.

Since the cylinder body deflects, it may cause malfunctions. Please consult with SMC when using it this way.

5. Do not mount cylinders as they are twisted.

Mounting with a slide table (slider)

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

MY1

MY1

 \square W

MY2C

H/HT

MY3M

HT

Mounting in a cantilevered way

When mounting, be sure for a cylinder tube not to be twisted. The flatness of the mounting surface is not appropriate, the cylinder tube is twisted, which may cause air leakage due to the detachment of a seal belt, damage a dust seal band, and cause malfunctions.

6. Do not generate negative pressure in the cylinder tube.

Take precautions under operating conditions in which negative pressure is generated inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt. Do not generate negative pressure in the cylinder by forcibly moving it with an external force during the trial operation or dropping it with self-weight under the non-pressure state, etc. When the negative pressure is generated, slowly move the cylinder by hand and move the stroke back and forth. (When using with a stroke adjustment unit, please either remove the unit or adjust the stroke to the full stroke.) After doing so, if air leakage still occurs, please consult with SMC.

Operating Environment

⚠ Warning

- Avoid use in environments where a cylinder will come in contact with coolants, cutting oil, droplet of water, adhesive matter, or dust, etc. Also avoid operation with compressed air that contains drainage or foreign matter, etc.
 - Foreign matter or liquids on the cylinder's interior or exterior can wash out the lubricating grease, which can lead to deterioration and damage of dust seal band and seal materials, causing a danger of malfunction.

When operating in locations with exposure to water and oil drops, or in dusty locations, provide protection such as a cover to prevent direct contact with the cylinder, or mount so that the dust seal band surface faces downward, and operate with clean compressed air.

2. The product is not designed for clean room usage.

If clean room usage is considered, please consult with SMC.

