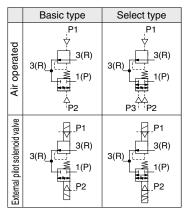
Power Valve: Economy Valve Series VEX5

Three functions (pressure regulator, switching valve, and speed controller) are provided by a single valve.

The conventional valve combination circuit has been condensed into a single valve.


A large capacity and economical system.

This valve provides twice the system capacity of the conventional circuit. Therefore, it is possible to downsize 1 or 2 sizes (for example, a conventional 32A circuit can be changed to a 25A or a 20A). It is economical, as its performance cost (system price/effective area) is one half of the conventional type. (Comparison based on SMC data.)

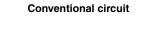
Note) With this valve, the port 3(R) is a supply port and port 1(P) is an exhaust port.

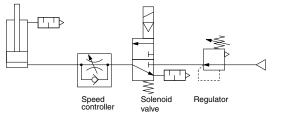
Standard Specifications

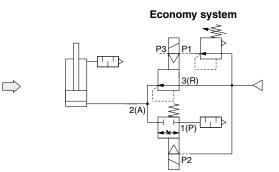
	Model	-	VE	X55□□·	04 06 10	VEX57	7□□- 10 12	VEX59	□□- <mark>14</mark> 20							
Op	peration typ	е			Air o	perated, Exte	ernal pilot sol	enoid								
Fl	uid					A	Air									
Pr	essure rang	je				0 to 1	.0 MPa									
Se	et pressure i	range	0.05 to 0.9 MPa													
Am	bient and fluid te	mperature	Max. 50°C (Air operated 60°C)													
	lot essure		P1: 0.05 to 0.9 MPa P2: 0.2 to 0.9 MPa (Air operated: P2, P3: 0.2 to 0.9 MPa P2 ≤ P3)													
Re	epeatability			0.01 MPa												
Se	ensitivity		0.01 MPa													
Re	esponse tim	е	60 ms or less													
Ма	ax. operating fi	requency				3 cycl	es/sec.									
Nu	mber of needle	rotations	6 turns 8 turns													
Mo	ounting		Free													
Lu	ubrication		Not required (Use turbine oil Class 1 ISO VG32, if lubricated.)													
		Port	04	06	10	10	12	14	20							
De	ort size	1 (P)				1		11/4								
	512.5	2 (A)	1/2	3⁄4	1		11/4	174	2							
		3 (R)				11/4		2								
Ff	fective area	mm ²	130	160	180	300	330	590	670							
		Cv	7.2	8.9	10	17	18	33	37							
ĝ	Air operated	Basic type		2.0		3	3.2	4	.7							
Weight (kg)		Select type		2.3		3	9.5	5.0								
eigl	Solenoid	Basic type		2.2		3	4	4.9								
Š	Sciencia	Select type	2.6 3.8 5.3													

Note) Non-lubricated specifications are not available for this product.

Pilot Solenoid Valve Specifications

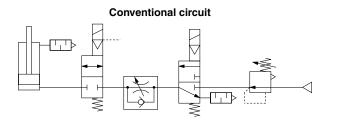

Мо	del		VEX5511/5711/5911/5501/5701/5901							
Pilot valve			SF4-□□-20							
Electrical e	entry		Grommet (G), Grommet terminal (E), Conduit terminal (T), DIN terminal (D)							
Coil rated	AC (50)/60Hz)	100 V, 200 V, Other (Option)							
voltage (V)	D	C	24 V, Other (Option)							
Allowable	voltag	je	-15 to +10% of rated voltage							
Apparent	AC	Inrush	5.6 VA (50Hz), 5.0 VA (60Hz)							
power	AC	Holding	3.4 VA (50Hz), 2.3 VA (60Hz)							
Power consumption	D	C	1.8 W (Without indicator light), 2 W (With indicator light)							
Manual ov	erride		Non-locking push type							

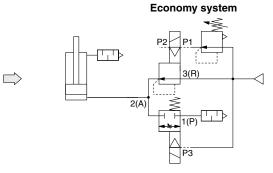

Accessory/Part No.

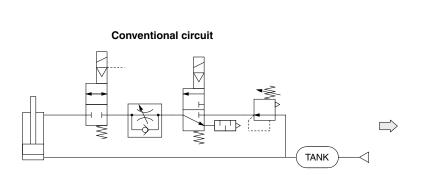

		Part no.	
Model Description	VEX55□□-04 10	VEX57□□-10	VEX59□□- ¹⁴ ₂₀
Bracket (With bolt and washer)	VEX5-32A	VEX7-32A	VEX9-32A
Pressure gauge		G46-10-01	

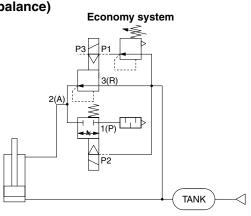
Applicable System/Example of Single Acting Circuit (The valves can be used also for double acting circuits, too. Please consult with SMC for details.)

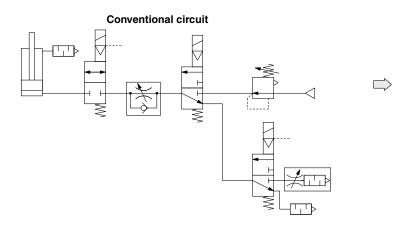
1. Speed control

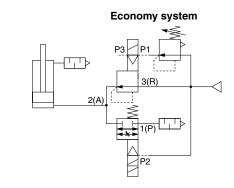





Ascending speed is controlled by a pilot regulator.
Descending speed is controlled by needle setting.


2. Intermediate (emergency) stop




3. Double pressure driving---Energy-saving lifter (Air saving counter balance)

4. Two speed driving

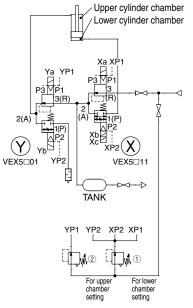
Energy-saving Lifter

Simple

Two economy valves and a tank move the double-acting cylinder to raise and lower heavy objects.

Energy-saving

The balancing air reciprocates between the lower cylinder chamber and the tank, thus not being consumed. Low pressure air alone is exhausted from the upper chamber in every cycle, so the air consumption is reduced to 20 to 30% of the air consumption by the double acting cylinder with an ordinary change over valve.


Excellent operation control

The economy valve sets pressure and permits high speed and low speed operation as well as suspension of operation. While the piston moves up and down, the valve controls speed change in the middle of strokes, terminal deceleration, inching, and emergency stops.

Simple operation

The pilot system is composed of a small regulator and solenoid valve (which is unnecessary for solenoid style), remote controls the economy valve. Therefore, change in the pilot system sequence allows selection of a cylinder operation mode. Change in the large capacity main piping system is not necessary.

<System configuration and operation of circuit in which external pilot solenoid is used>

The two economy valves (hereinafter called VEX) (X) and (Y) and a tank composes a main system that drives the double acting cylinder, and the small regulator (hereinafter called REG) and pilot valve (hereinafter called SOL) remote control the economy valve.

Action

ACIIO							
Cylinder	SOL	Ха	Xb	Xc	Yb	Ya	Mode
Upward	High speed	ON ●	•	OFF –	•	-	а
	Low speed	٠			•	-	b
Downword	High speed	-	٠	-	-		С
Downward	Low speed	-		•	-	•	d
Sto	ор	-	-	-	_	-	е

- **a:** The air in the upper cylinder chamber is exhausted from the port 1 (P) of VEX $\langle Y \rangle$, and the air in the tank flows in through the port 1 (P) of VEX $\langle X \rangle$.
- **b:** Air flows into the lower cylinder chamber through a throttled opening, set by a needle, from the port 2 (A) to 1 (p) of VEX \widehat{X} .
- **c:** The air in the tank flows into the upper cylinder chamber at a preset low pressure from the port 2 (A) of VEX(Y), while the air in the lower cylinder chamber returns to the tank through VEX (X).
- **d:** Air returns to the tank through a throttled opening from the port 1 (P) to 2 (A) of VEX (X).
- e: The air in the lower cylinder chamber is blocked at the port 1 (P) of VEX (X), while the air in the upper cylinder chamber is blocked at the port 2 (A) of VEX (Y).

≜Caution

A lifter circuit can be composed of air operated valves. Please contact SMC for details.

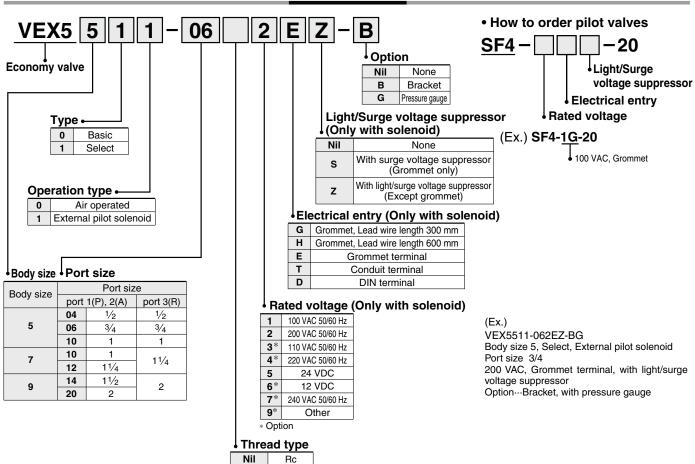
Cylinder Speed Chart

Please assume the chart is offered as the guideline. For details about various each condition, please make use of SMC Model Selection Software and then decide it.

					Bore size		
System	Average velocity (mm/s)	Series CS Pressure 0 Cylinder st	1/CS2).5 MPa, Lc troke 300 m	ad factor 5	0%		
		ø125	ø140	ø160	ø180	ø200 ø250	ø300
	1000 900 800 700					Vertically upwar	
A	600 500 400 300 200 100 0						
В	1000 900 800 700 600 500 400 300 200 100 0						
c	1000 900 800 700 600 500 400 300 200 100 0						
D	1000 900 800 700 600 500 400 300 200 100 0						
E	1000 900 800 600 500 400 300 200 100 0						
F	1000 900 800 700 600 500 400 300 200 100 0						
G	1000 900 800 700 600 500 400 300 200 100 0						

* When the cylinder is extended, the speed controller is metered-out, is connected with the cylinder directly, and its needle is fully open.

Values on the average velocity of a cylinder are obtained from the stroke length divided by full stroke time.
 Load proportion is ((load weight x 9.8)/theoretical force) x 100%


Conditions of Speed Chart

	· · · · · · · · · · · · · · · · · · ·				
System	Solenoid valve	Speed controller	Silencer	Tubing diameter x Length	
Α	04	AS420-04	AN40-04	SGP15A x 1 m	
В	VEX55□□-04	AS500-06	AN500-06	SGP20A x 1 m	
С	10	AS600-10	AN600-10	SGP25A x 1 m	
D	VEX5700-12	AS600-10	AN600-10	SGP25A x 1 m	
E		AS800-12	AN700-12	SGP32A x 1 m	
F	VEX59	AS900-14	AN800-14	SGP40A x 1 m	
G	20	AS900-20	AN900-20	SGP50A x 1 m	

Power Valve: Economy Valve Series VEX5

How to Order

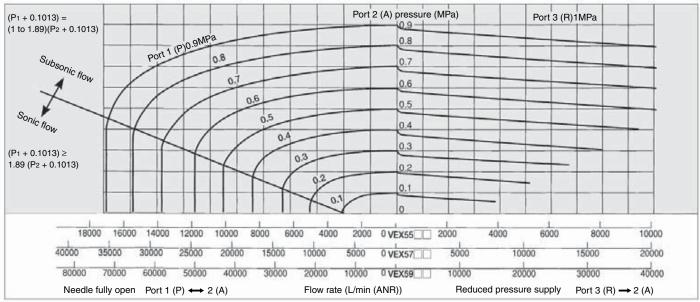
Note 1) Not conforming to ISO1179-1.

G⁽¹⁾

NPT

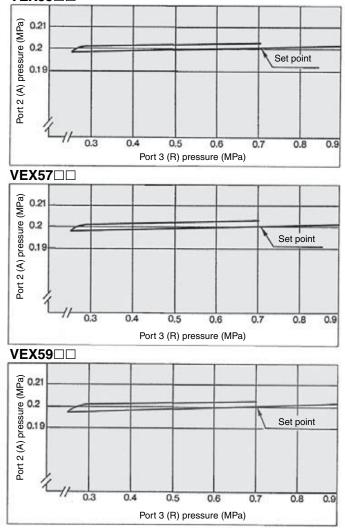
NPTF

F

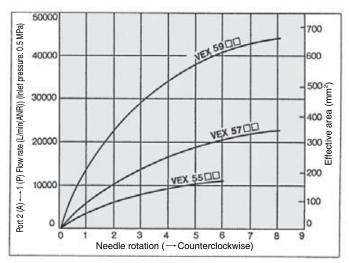

Ν

т

Model

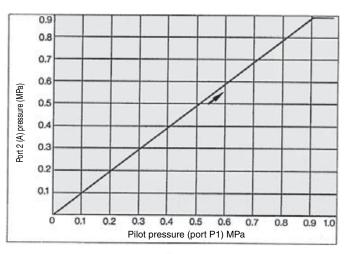

	Basic	type	Selec	t type	Port	size
Model	Air operated	External pilot solenoid	Air operated	External pilot solenoid	Port 1 (P), 2 (A)	Port 3 (R)
	VEX5500	VEX5501	VEX5510	VEX5511	1/2, 3/4, 1	1/2, 3/4, 1
Economy valve	VEX5700	VEX5701	VEX5710	VEX5711	1, 11⁄4	11⁄4
	VEX5900	VEX5901	VEX5910	VEX5911	11⁄2, 2	2

Flow Characteristics

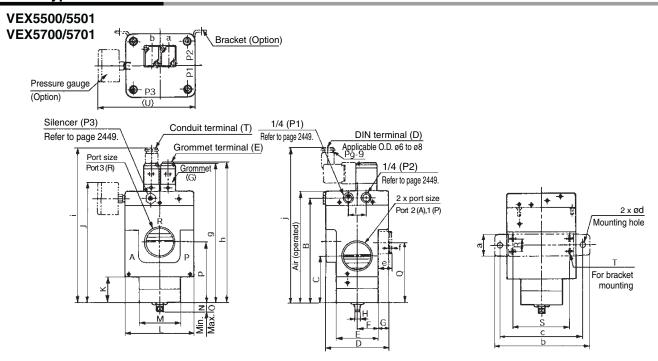


Pressure Characteristics

Shows the outlet pressure (port 3 (R)) change against the inlet pressure (port 2 (A)) change. They conform to JIS B 8372 (Air pressure regulator). **VEX55** \Box

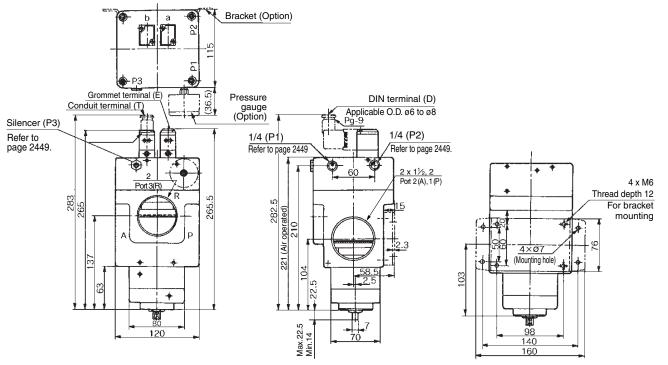


Needle Characteristics Port 2 (A) \leftarrow 1 (P)



Setting Pressure Characteristics

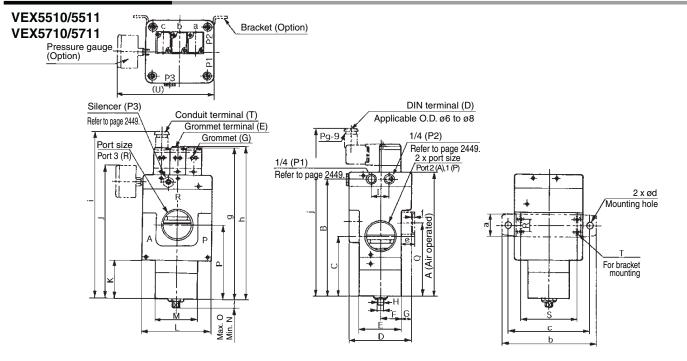
Port 2 (A) pressure is set according to pilot pressure. (port 3 (R) \rightarrow 2 (A): Non-relief regulator)



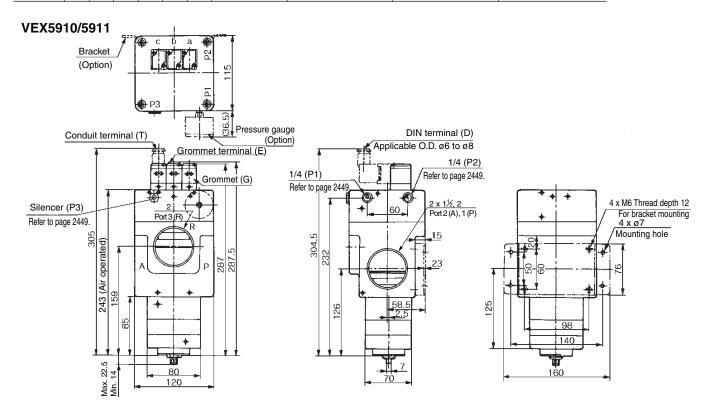
Basic Type/Dimensions

Model	Port s Port 2 (A),1 (P)		Α	в	с	D	Е	F	G	н	I	J	к	L	М	Ν	0	Ρ	Q	R	s	т	U
VEX5500 VEX5501	1/2, 3/4, 1	1/2, 3/4, 1	143.5	133.5	62.5	70	50	25	10	7	25	156.5	36.5	80	60	16.5	20	81.5	83.5	Center	60	2 x M6 Thread depth 9	116.5
VEX5700 VEX5701	1, 11⁄4	1 1⁄4	160.5	150.5	62.5	90	60	30	15	7	25	173.5	37.5	100	60	13	17	88.5	86.5	18	82	2 x M6 Thread depth 6	136.5

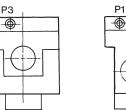
Model	Brad	cket r	nount	ing di	mens	ions	Grommet	Grommet terminal	Conduit terminal	DIN terminal
woder	а	b	С	d	е	f	g	h	i	j
VEX5500 VEX5501	19	130	110	9	12	2.3	187	187.5	205.5	205
VEX5700 VEX5701	32	136	120	9	20	2.3	204	204.5	222.5	222

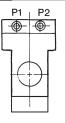

VEX5900/5901

SMC


VEX

Select Type/Dimensions


Model	Port Port 2 (A),1 (P)	size Port 3 (B)	Α	в	с	D	Е	F	G	н	I	J	к	L	м	N	0	Р	Q	R	s	т	U
VEX5510 VEX5511	1/2, 3/4, 1	,		150	79	70	50	25	10	7	25	173	53	80	60	13	18	98	100	Center	60	2 x M6 Thread depth 9	116.5
VEX5710 VEX5711	1,11⁄4	1 1⁄4	177.5	167.5	84.5	90	60	30	15	7	25	190.5	54.5	100	60	13	17	105.5	103.5	18	82	4 x M6 Thread depth 6	136.5


Model	Bra	cket r	nount	ing di	mens	ions	Grommet	Grommet terminal	Conduit terminal	DIN terminal
woder	а	b	С	d	е	f	g	h	i	j
VEX5510 VEX5511	19	130	110	9	12	2.3	204	204.5	222	221.5
VEX5710 VEX5711	32	136	120	9	20	2.3	221	221.5	239.5	239

SMC

External Pilot Piping

Port 3 (R) side

Port 1 (P) side

Model	P1	P2	P3
VEX5□00	External pilot	External pilot	Plug
VEX5□01	External pilot	External pilot	Pilot ^{Note)} exhaust
VEX5□10	External pilot	External pilot	External pilot
VEX5□11	External pilot	External pilot	Pilot ^{Note)} exhaust

Note) For pilot exhaust port, silencer AN210-02 is mounted.

▲Caution

L

Refer to front matter 53 for Safety Instructions and pages 3 to 8 for 3/4/5 Port Solenoid Valve Precautions.

How to Use DIN Terminal

1. Disassembly

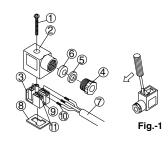
- After loosening the screw ①, then if the housing ② is pulled in the direction of the screw ①, the connector will be removed from the body of equipment (solenoid, etc.).
- 2) Pull the screw 1 out of the housing 2.
- 3) On the bottom part of the terminal block
 ③, there's a cut-off part ④. If a small flat head screwdriver is inserted between the opening in the bottom, terminal block
 ③ will be removed from the housing ②. (Refer to the figure-1.)
- 4) Remove the cable gland ④, plain washer ⑤ and rubber seal ⑥.

2. Wiring

- Pass the cable ⑦ through the cable gland ④, plain washer ⑤ and rubber seal ⑥ in this order, and then insert them into the housing ②.
- Loosen the screw ① attached to the terminal block ③. Then, pass the lead wire ① through the terminal block ③ and tighten the screw ① again.
 - Note 1) Tighten within the tightening torque of 0.5 N·m \pm 15%.
 - Note 2) Cable ⑦ outside diameter: ø6 to ø8 mm

3. Assembly

 Pass the cable 7 through the cable gland 4, plain washer 5 and rubber seal 6 in this order and connect to the terminal block 3. Then, mount the terminal block 3 on the housing 2.


(Push it down until you hear the click sound.)

- 2) Put the rubber seal 6 and plain washer
 5 in this order into the cable entry of the housing 2, and then tighten the cable gland 4 securely.
- Insert the gasket (8) between the bottom part of terminal block (3) and the plug attached to the equipment. Then, screw in (1) from the top of the housing (2) to tighten it.

Note) Tighten within the tightening torque of 0.5 N·m $\pm 20\%.$

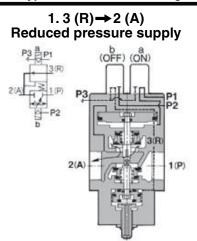
Changing the entry direction

The orientation of a connector can be changed 180°, depending on the combination of a housing (2) and a terminal block (3).

Related Products:

Silencer (Series AN)

- Over 30 dB noise reduction
- Sufficient effective area


• Refer to Best Pneumatics No. 6 for details.

Exhaust Cleaner (Series AMC)

- Provides a silencing capability and an oil mist recovery function.
- Can also be used in a centralized piping system.
- Refer to Best Pneumatics No. 6 for details.

Basic Type/Construction/Working Principle/Component Parts

Note) With this valve, the port 3 (R) is a supply port and port 1 (P) is an exhaust port.

When the pilot solenoid valve "a" is energized

(or when pilot pressure is applied to the port P1 of the air operated type) while the port P1

is under the pilot pressure, reduced pressure

is supplied from the port 3 (R) to the port 2 (A).

The acting force of the pilot pressure (port P1)

reaches the space under the pressure control

piston $\ensuremath{\textcircled{3}}$ pushes the piston upward and opens

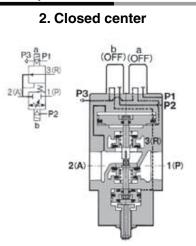
the poppet valve (6). Thus air is supplied from

The air entering through the port 2 (A) flows

through the feedback passage to the space

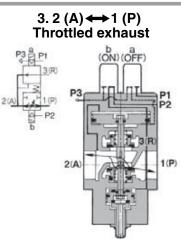
above the piston, and when its pressure

balances with the pilot pressure under the


pressure control piston, the poppet valve closes, thus setting the port 2 (A) pressure

corresponding to the pilot pressure (port P1).

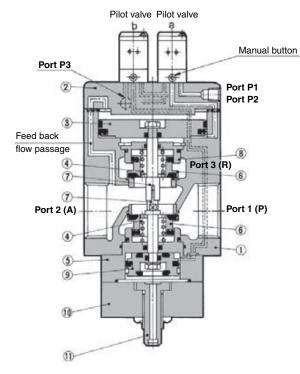
(port P1 pressure: port 2 (A) pressure = 1:1)


When the reduced pressure is supplied from 3 (R) to 2 (A), air will not be exhausted from 2 (A) to 1 (P) even when the pilot pressure (port P1) is larger than the port 2 (A) pressure.

the port 3 (R) to the port 2 (A).

When neither the pilot solenoid valves "a" or "b" is energized (or when no pilot pressure is applied to the ports P1 and P2 of the air operated type), no acting force is applied to the pressure control piston ③ and operation piston ④, and the spring ④ closes both poppet valves ⑥, thus the valves assume the closed center position.

While the port 2 (A) is being pressurized, air will not be released even if electrical power to the pilot solenoid valve "a" is turned off (or pilot pressure is released from the port P1 of the air operated type).


When the pilot solenoid valve "b" is energized while pilot pressure is in the port P2 (or when the pilot pressure is applied to the port P2 of the air operated type), an acting force generated above the operation piston pushes the operation piston down, and thus the port 1 (P) and port 2 (A) are connected.

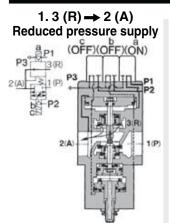
At that time, the lower poppet value 6 opens by the degree preset by the needle 1.

(Counterclockwise rotation of the needle opens the poppet valve.)

The upper and lower poppet valves operate independently. When the pilot solenoid valves "a" and "b" are energized alternately (or when pilot pressure is applied to the ports P1 and P2 of the air operated style alternately), the supplied reduced pressure (3 (R) \rightarrow 2 (A)) can be throttled and exhausted (2 (A) \rightarrow 1 (P)).

Construction

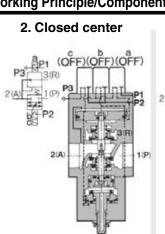
(Basic type: External pilot solenoid)


Component Parts

No.	Description	Material
1	Body	Aluminum alloy casted
2	Cover	Aluminum alloy casted
3	Pressure control piston	Aluminum alloy
4	Spring	Stainless steel
5	Chamber	Aluminum alloy
6	Poppet valve	NBR
7	Rod	Stainless steel
8	Valve guide	Aluminum alloy
9	Operation piston	Aluminum alloy
10	Bottom cover	Aluminum alloy
11	Needle	Brass

Note) With this valve, the port 3 (R) is a supply port and port 1 (P) is an exhaust port.

When the pilot solenoid valve "a' is energized (or when pilot pressure is applied to the port P1 of the air operated type) while the port P1 is under the pilot pressure, reduced pressure is supplied from the port 3 (R) to the port 2 (A).


The acting force of the pilot pressure (port P1) reaches the space under the pressure control piston ③ pushes the piston upward and opens the poppet valve 6. Thus air is supplied from the port 3 (R) to the port 2 (A).

The air entering through the port 2(A) flows through the feedback passage to the space above the piston and when its pressure balances with the pilot pressure under the pressure control piston, the poppet valve closes, thus setting the port 2 (A) pressure corresponding to the pilot pressure (port P1).

(port P1 pressure: port 2(A) pres-sure = 1:1)

When the reduced pressure is supplied from 3 (R) to 2 (A), air will not be exhausted from 2 (A) to 1 (P) even when the pilot pressure (port P1) is larger than the port 2 (A) pressure.

Construction

When neither the pilot solenoid valve "a" nor "b" is energized (or when no pilot pressure is applied to the ports P1 and P2 of the air operated type), no acting force is applied to the pressure control piston (3) and operation piston (9), and the spring ④ closes both poppet valves ⑥, thus the valve assumes the closed center position.

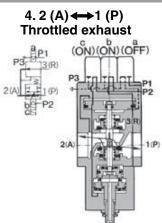
While the port 2(A) is being pressurized, air will not be released even if electrical power to the pilot solenoid valve "a" is turned off (or pilot pressure is released from the port P1 of the air operated type).

When the pilot solenoid valve "b" is energized while pilot pressure is in the port P2 (or when the pilot pressure is applied to the port P2 of the air operated type), an acting force generated above the operation piston (9), and pushes down the operation piston, and thus the ports 1(P) and 2 (A) are connected.

3. 2 (A) ↔1 (P)

Fully open exhaust

P2 別

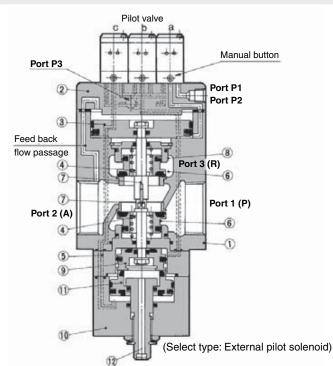

2(4

(OFF)(ON)(OFF)

1/P

At that time, the lower poppet

valve 6 fully opens.


When the pilot solenoid valves "b" and "c" are energized simultaneously while pilot pressure is in the port P2 (or when the pilot pressure is applied simultaneously to the ports P2 and P3 of the air operated type), an acting force generated above the operation piston (9) pushes the piston down and another acting force generated under the stopper (1) pushes up the stopper, and thus the ports 1 (P) and 2 (A) are connected.

At that time, the lower poppet valve (6) opens by the degree preset by the needle 12. (Counterclockwise rotation of the needle opens the poppet valve.)

The upper and lower poppet valves operate independently. When the pilot solenoid valves "a" and "b" are energized alternately (or when pilot pressure is applied alternately to the ports P1 and P2 of the air operated type), the supplied reduced pressure (3 (R) \rightarrow 2 (A)) can be throttled and exhausted (2 (A) \rightarrow 1 (P)).

The pilot solenoid valve "c" remains energized (or pilot pressure remains applied to the port P3 of the air operated type).

By turning on/off the pilot solenoid valve "c" (or by supplying/exhausting pilot pressure to/from the port P3 of the air operated type) while electric power is being supplied to the pilot solenoid valve "b" (or pilot pressure is being applied to the port P2 of the air operated type), either throttling or fully open exhaust can be selected (decelaration/ accelaration) for the port 2 (A) ↔ 1 (P).

SMC

Component Parts

No.	Description	Material
1	Body	Aluminum alloy casted
2	Cover	Aluminum alloy casted
3	Pressure control piston	Aluminum alloy
4	Spring	Stainless steel
5	Chamber	Aluminum alloy
6	Poppet valve	NBR
7	Rod	Stainless steel
8	Valve guide	Aluminum alloy
9	Operation piston	Aluminum alloy
10	Bottom cover	Aluminum alloy
11	Stopper	Aluminum alloy
12	Needle	Brass

VEX