Compact Cylinder: Standard Type **Double Acting, Double Rod** COSW Series ø12, ø16, ø20, ø25

How to Order CQSW B 20 - 30 D C CDQSW B 20-30 D C-M9BW With auto switch Made to Order With auto switch Refer to page 811 for details. (Built-in magnet) Mounting type Number of auto switches в Through-hole/Both ends tapped common (Standard) Foot type Nil 2 pcs. L LC 1 pc. Compact foot type s F Flange type "n" pcs. n * Mounting brackets are shipped together (but not assembled). Auto switch Cylinder mounting bolts are not included. Order them separately referring to "Mounting Bolt for CQSW" on page 814. Nil Without auto switch * Refer to the table below for the applicable auto switch model Bore size 12 12 mm 16 16 mm Body option 20 20 mm Standard Nil 25 25 mm С With rubber bumper М Rod end male thread Cylinder stroke (mm) Combination of body options is Standard Stroke available, CM Bore size (mm) Standard stroke (mm) 12, 16 5, 10, 15, 20, 25, 30 Action Built-in Magnet Cylinder Model 20.25 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 D Double acting If a built-in magnet cylinder without an auto For "Manufacture of Intermediate Strokes", refer to page 811. switch is required, there is no need to enter

Annlicable Auto Switches/Refer to pages 1271 to 1365 for further information on auto switches

				ie palgee i = i		• • • • • • •																		
		Fleetrical	light	Minima	Load voltage			Auto swit	Lead wire length (m)															
Туре	Special function		dicator	(Output)	DC		AC	Perpendicular	In-line	0.5 (Nii)	1 (M)	3	5	connector	Applical	ble load								
			1	2 wire (NDN)				MONIX	MON			(L)		0										
ء				3-wire (INI IN)		5 V, 12 V		IVISINV	IVISIN			-	$\stackrel{\circ}{\sim}$		IC circuit									
5	_			3-wire (PNP)				M9PV	M9P	•	•	•	\cup											
Ň				2-wire		12 V	12 V	M9BV	M9B			٠	0		-									
ő	Discretis indication			3-wire (NPN)	514 40 14	514 40 14		V. 40.V	M9NWV	M9NW	•	•	•	0	0									
art	(2-color indicator) Grom	0		3-wire (PNP)	5 V, 12 V	M9PWV	M9PW	•	•	٠	0	0		Relay,										
te		Grommer	res	2-wire	24 V	12 V 5 V, 12 V	1 -	M9BWV	M9BW	•	•	۲	0	0	—	- PLC								
sta	Weter registent			3-wire (NPN)			1	M9NAV*1	M9NA*1	0	0	٠	0	0										
<u>e</u>	(2-color indicator)			3-wire (PNP)]			M9PAV*1	M9PA*1	0	0	٠	0	0										
Sol				2-wire		12 V		12 V]	M9BAV*1	M9BA*1	0	0	۰	0	0								
	Magnetic field resistant (2-color indicator)			2-wire (Non-polar)		—		—	P3DWA**		-	•	•	0										
ed switch		Grommot	Yes	3-wire (NPN equivalent)	_	5 V	_	A96V	A96	•	-	•	-	-	IC circuit	—								
E Be		Gionnet		2 wire	24.14	10.1/	100 V	A93V*2	A93	•	•	۲	۲	-	—	Relay,								
au			No	2-wire	2-wire	2-wire	2-wire	2-wire	2-wire	2-wire	2-wire	2-wire	24 V	12 V	100 V or less	A90V	A90	•	-	٠	-	-	IC circuit	PLC

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.

Consult with SMC regarding water resistant types with the above model numbers.

*2 1 m type lead wire is only applicable to D-A93.

* Solid state auto switches marked with "O" are produced upon receipt of order. ** Available only for ø25. It is mounted away from the port side to avoid interference with fittings

- * Lead wire length symbols: 0.5 m Nil (Example) M9NW 1 m······ M (Example) M9NWM
 - 3 m······· L (Example) M9NWL 5 m······ Z (Example) M9NWZ

* Since there are other applicable auto switches than listed, refer to page 853 for details

* For details about auto switches with pre-wired connector, refer to pages 1340 and 1341

* Auto switches are shipped together (not assembled).

Note) There is the case D-A9 V/M9 V/M9 V/M9 AV type auto switches cannot be mounted on the port surface, depending on the cylinder's stroke and the fitting size for piping. Consult with SMC for details.

the symbol for the auto switch. (Example) CDQSWL25-30D

Compact Cylinder: Standard Type Double Acting, Double Rod CQSW Series

Symbol Without cushion

Made to Order: Order Individual Specifications

	(For details, refer to pages 854 and 855.)
Symbol	Specifications
-X235	Change of piston rod end of double rod cylinder
-X271	Fluororubber seals
-X633	Intermediate stroke of double rod cylinder

Made to Order Specifications

Click here for details							
Symbol	Specifications						
-XA□	Change of rod end shape						
-XB6	Heat-resistant cylinder (-10 to 150 °C) (without an auto switch)						
-XB7	Cold-resistant cylinder (-40 to 70 °C) (without an auto switch)						
-XB9	Low speed cylinder (10 to 50 mm/s)						
-XB10	Intermediate stroke (Using exclusive body)						
-XB13	Low speed cylinder (5 to 50 mm/s)						
-XC6	Piston rod, retaining ring, rod end nut made of stainless steel						
-XC36	With boss in rod side						
-XC85	Grease for food processing equipment						

Body Option

Description	Application
Rod end male thread	Available for all standard models
Rubber bumper	of double acting, double rod.

Mounting Bracket Part No.

Bore size (mm) Foot ⁽¹⁾		Compact foot (1)	Flange		
12	CQS-L012	CQS-LC012	CQS-F012		
16	CQS-L016	CQS-LC016	CQS-F016		
20	CQS-L020	CQS-LC020	CQS-F020		
25	CQS-L025	CQS-LC025	CQS-F025		

Note 1) When ordering foot and compact foot brackets, order 2 pieces per cylinder.

Note 2) Parts belonging to each bracket are as follows. Foot, Compact foot, Flange type: Body mounting bolt

Moisture Control Tube IDK Series

When operating an actuator with a small diameter and a short stroke at a high frequency, the dew condensation (water droplet) may occur inside the piping depending on the conditions.

Simply connecting the moisture control tube to the actuator will prevent dew condensation from occurring. For details, refer to the **web Catalog**.

Spe	cifica	tions
-----	--------	-------

Bore size (m	m)	12	16	20	25			
Action	Double acting, Double rod							
Fluid		A	ir					
Lubrication			Not required	d (Non-lube)				
Proof pressure			1.5 I	MPa				
Maximum operating pres	sure		1.0	MPa				
Minimum operating press	0.07	MPa	0.05	MPa				
Ambient and fluid temps		Without auto switch: -10 to 70°C (No freezing)						
Amplent and huid tempe	rature	With auto switch: -10 to 60°C (No freezing)						
Cushion		None, Rubber bumper						
Rod end thread		Female thread						
Stroke length tolerance		+1.0 mm *						
Piston speed	50 to 500 mm/s							
Allewskie kinetie energy (I)	Standard type	0.022	0.038	0.055	0.09			
Allowable kinetic energy (J)	With rubber bumper	0.043	0.075	0.11	0.18			

* Stroke length tolerance does not include the deflection of the bumper.

Theoretical Output

Bore size	Rod size	Operating	Piston area	Operating pressure (MPa)							
(mm)	(mm)	direction	(mm²)	0.3	0.5	0.7					
10	6	IN	04.0	05	40	50					
12	0	OUT	84.8	25	42	59					
40	0	IN	454	45	75	106					
10	8	OUT	151	45	75						
20	10	IN		74	440	405					
20	10	OUT	236		118	165					
	10	IN	070	110	100	004					
25	12	OUT	378	113	189	264					

Manufacture of Intermediate Stroke

Description	Spacer is installed in th	e standard stroke body.	Exclusive body (-XB10)			
Dert ne	Suffix "-X633" to the	e end of standard	Suffix "-XB10" to the end of standard			
Part no.	model no. (page 81	0).	model no. (page 81	0).		
	Intermediate stroke	s in 1 mm	Dealing with the stre	oke in 1 mm		
Description	increments are avai	lable by using	increments by using	g an exclusive body		
	spacers with standa	ard stroke cylinders.	with the specified stroke.			
	Bore size	Stroke range	Bore size	Stroke range		
Stroke range	12, 16 6 to 29		12, 16	1 to 29		
	20, 25 6 to 49		20, 25	1 to 49		
	Part no.: CQSWB2	5-47D-X633	Part no.: CQSWB25-47D-XB10			
Evenale	CQSWB25-50D wit	th 3 mm width	Makes 47 stroke tube.			
Example	spacer inside.		B dimension is 76 mm.			
	B dimension is 79 r	nm.				

Refer to pages 852 to 853 for cylinders with auto switches.

· Proper auto switch mounting position (detection at stroke end) and mounting height

Operating range

· Minimum auto switch mounting stroke

SMC

CQSW Series

Weight/Without Auto Switch

Bore size	Cylinder stroke (mm)											
(mm)	5	10	15	20	25	30	35	40	45	50		
12	38	46	54	62	69	77	-	-	-	-		
16	50	61	71	81	92	102	-	-	-	-		
20	89	104	120	136	152	167	183	199	215	231		
25	127	146	166	186	206	227	247	267	287	308		

Weight/With Auto Switch (Built-in magnet)

Bore size	Cylinder stroke (mm)											
(mm)	5	10	15	20	25	30	35	40	45	50		
12	46	54	62	70	77	85	-	-	-	-		
16	60	71	81	91	102	112	-	-	-	-		
20	119	134	150	166	182	198	214	230	245	261		
25	154	174	195	215	235	255	276	296	316	336		

Additional Weight

_					
Bore size (mm)	12	16	20	25	
De dere dere de Altere e d	Male thread	3	6	12	24
Rod end male thread	Nut	2	4	8	16
With rubber bumper	With rubber bumper				-2
Foot type (Including mounting be	Foot type (Including mounting bolt)				181
Compact foot type (Including mo	41	51	121	140	
Rod side flange type (Including	58	70	143	180	

Calculation: (Example) CQSWF12-10DM

Cylinder weight: CQSWB12-10D------46 g
Additional weight: Rod end male thread------5 g

: Rod side flange type-----

109 g

58 g

Caution Retaining Ring Installation/Removal

- For installation and removal, use an appropriate pair of pliers (tool for installing a type C retaining ring).
- 2. Even if a proper plier (tool for installing type C retaining ring) is used, it is likely to inflict damage to a human body or peripheral equipment, as a retaining ring may be flown out of the tip of a plier (tool for installing a type C retaining ring). Be much careful with the popping of a retaining ring. Besides, be certain that a retaining ring is placed firmly into the groove of rod cover before supplying air at the time of installment.

▲Warning

(q)

(q)

(a)

Mounting

Do not apply the reverse torque to the piston rods sticking out from both sides of this cylinder at the same time. The torque makes connection threads inside loosen, which may cause an accident or malfunction.

Install or remove a load while the piston rod width across flats are secured. Do not fix the other side of piston rod width across flat and apply the reverse torque.

Construction

Basic type

With auto switch (Built-in magnet)

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Collar	Aluminum alloy	Anodized
3	Piston	Aluminum alloy	
4	Piston rod A	Stainless steel	
5	Piston rod B	Stainless steel	
6	Retaining ring	Carbon tool steel	Phosphate coated
7	Rod end nut	Carbon steel	Zinc chromated
8	Bumper	Urethane	
9	Spacer for switch	Aluminum alloy	Chromated
10	Magnet	—	
11	Rod seal	NBR	
12	Piston seal	NBR	
13	Tube gasket	NBR	

Replacement Parts/Seal Kit

Bore size (mm)	Kit no.	Contents
12	CQSWB12-PS	
16	CQSWB16-PS	Set of nos above 11 12 13
20	CQSWB20-PS	Set of hos. above (1), (2, (3
25	CQSWB25-PS	

SMC

* Seal kit includes (1), (2), (3. Order the seal kit, based on each bore size.

* Since the seal kit does not include a grease pack, order it separately. Grease pack part no.: GR-S-010 (10 g)

With rubber bumper

ø**20**, ø**25**

Rod end male thread

CQSW Series

Mounting Bolt for CQSW

Mounting method: Mounting bolt for through-hole mounting type of CQSW is

available as an option. Refer to the following for ordering procedures. Order the actual number of bolts that will be used.

Example) CQ-M3x30L 4 pcs.

Cylinder model	С	D	Mounting bolt part no.
CQSWB12-5D		30	CQ-M3 x 30L
-10D		35	x 35L
-15D	6.5	40	x 40L
-20D	0.5	45	x 45L
-25D		50	x 50L
-30D		55	x 55L
CQSWB16-5D		30	CQ-M3 x 30L
-10D		35	x 35L
-15D	6.5	40	x 40L
-20D	0.5	45	x 45L
-25D		50	x 50L
-30D		55	x 55L
CQSWB20-5D		35	CQ-M5 x 35L
-10D	10	40	x 40L
-15D	10	45	x 45L
-20D		50	x 50L

Cylinder model	С	D	Mounting bolt part no.
CQSWB20-25D		55	CQ-M5 x 55L
-30D		60	x 60L
-35D	10	65	x 65L
-40D	10	70	x 70L
-45D		75	x 75L
-50D		80	x 80L
CQSWB25-5D		35	CQ-M5 x 35L
-10D		40	x 40L
-15D		45	x 45L
-20D		50	x 50L
-25D	-	55	x 55L
-30D	· '	60	x 60L
-35D		65	x 65L
-40D		70	x 70L
-45D		75	x 75L
-50D		80	x 80L

Note) When mounting a cylinder with throughhole, be sure to use the attached plain washer.

Material: Chromium molybdenum steel Surface treatment: Zinc chromated

Mounting Bolt for CDQSW with Auto Switch

Mounting method: Mounting bolt for through-hole mounting type of CDQSW is available as an option.

Refer to the following for ordering procedures. Order the actual number of bolts that will be used.

Example) CQ-M3x35L 4 pcs.

CDQSWB12-5D		35	CQ-M3 x 35L
-10D		40	x 40L
-15D	6.5	45	x 45L
-20D	0.5	50	x 50L
-25D		55	x 55L
-30D		60	x 60L
CDQSWB16-5D		35	CQ-M3 x 35L
-10D		40	x 40L
-15D	6.5	45	x 45L
-20D	0.5	50	x 50L
-25D		55	x 55L
-30D		60	x 60L
CDQSWB20-5D		45	CQ-M5 x 45L
-10D	10	50	x 50L
-15D	10	55	x 55L
-20D		60	x 60L

Cylinder model C D Mounting bolt part no.

Cylinder model	С	D	Mounting bolt part no.
CDQSWB20-25D		65	CQ-M5 x 65L
-30D		70	x 70L
-35D	10	75	x 75L
-40D	10	80	x 80L
-45D		85	x 85L
-50D		90	x 90L
CDQSWB25-5D		45	CQ-M5 x 45L
-10D		50	x 50L
-15D		55	x 55L
-20D		60	x 60L
-25D	-	65	x 65L
-30D		70	x 70L
-35D		75	x 75L
-40D		80	x 80L
-45D		85	x 85L
-50D		90	x 90L

Note) When mounting a cylinder with throughhole, be sure to use the attached plain washer. Material: Chromium molybdenum steel Surface treatment: Zinc chromated

Dimensions: ø12 to ø25

Basic type (Through-hole/Both ends tapped common): CQSWB/CDQSWB

Bore size	without auto switch	with auto switch	D.	C.	ш.	1.	NANA .	v
(mm)	A 1	A 1	D1	0	п	L1		^
12	50	55	8	9	4	14	M5 x 0.8	10.5
16	53	58	10	10	5	15.5	M6 x 1.0	12
20	63	73	13	12	5	18.5	M8 x 1.25	14
25	74	84	17	15	6	22.5	M10 x 1.25	17.5

Basic Type

oke range	Without ai	uto switch	With aut	o switch	c	п	E	ы		ĸ		м	N	0.4		0	DA	DB	т
(mm) -	A	B	Α	в	· ·		-		•	n	-	IVI	N	UA	00	Q	nA	nD	•
5 to 30	29	22	34	27	6	6	25	M3 x 0.5	32	5	3.5	15.5	3.5	M4 x 0.7	6.5	7.5	7	4	0.5
5 to 30	29	22	34	27	8	8	29	M4 x 0.7	38	6	3.5	20	3.5	M4 x 0.7	6.5	7.5	7	4	0.5
5 to 50	35	26	45	36	7	10	36	M5 x 0.8	47	8	4.5	25.5	5.4	M6 x 1.0	9	8	10	7	1
5 to 50	39	29	49	39	12	12	40	M6 x 1.0	52	10	5	28	5.4	M6 x 1.0	9	9	10	7	1
	ke range (mm) 5 to 30 5 to 30 5 to 50 5 to 50	ke range (mm) Millioural 5 to 30 29 5 to 30 29 5 to 50 35 5 to 50 39	ke range (mm) Wildout also sinker A B 5 to 30 29 22 5 to 30 29 22 5 to 50 35 26 5 to 50 39 29	ke range (mm) Withou due since Withou due since 6 to 30 29 22 34 5 to 30 29 22 34 5 to 50 35 26 45 5 to 50 39 29 49	Ke range (mm) A B A B 5 to 30 29 22 34 27 5 to 50 29 22 34 27 5 to 50 35 26 45 36 5 to 50 39 29 49 39	Ker range (mm) B A B C 5 to 30 29 22 34 27 6 5 to 30 29 22 34 27 6 5 to 50 35 26 45 36 7 5 to 50 39 29 49 39 12	Window allow Window W	With Collable and With all as Simol C D E 5 to 30 29 22 34 27 6 6 25 5 to 30 29 22 34 27 8 8 29 5 to 50 35 26 45 36 7 10 36 5 to 50 39 29 49 39 12 12 40	Ker range (mm) Ker ran	Ker range B A B A B C D E H I 5 to 30 29 22 34 27 6 6 25 M3 x 0.5 32 5 to 30 29 22 34 27 8 8 29 M4 x 0.7 38 5 to 50 35 26 45 36 7 10 36 M5 x 0.8 47 5 to 50 39 29 49 39 12 12 40 M6 x 1.0 52	Web cauge with with aux silence Web cauge with with aux silence C D E H I K 5 to 30 29 22 34 27 6 6 25 M3 x 0.5 32 5 5 to 30 29 22 34 27 8 8 29 M4 x 0.7 38 6 5 to 50 35 26 45 36 7 10 36 M5 x 0.8 47 8 5 to 50 39 29 49 39 12 12 40 M6 x 1.0 52 10	Werrange Turbulatus Werrange C D E H I K L 5 to 30 29 22 34 27 6 6 25 M3 x 0.5 32 5 3.5 5 to 30 29 22 34 27 8 8 29 M4 x 0.7 38 6 3.5 5 to 50 35 26 45 36 7 10 36 M5 x 0.8 47 8 4.5 5 to 50 39 29 49 39 12 12 40 M6 x 1.0 52 10 5	Ker range Fill K L M 5 to 30 29 22 34 27 6 6 25 M3 x 0.5 32 5 3.5 15.5 5 to 30 29 22 34 27 8 8 29 M4 x 0.7 38 6 3.5 20 5 to 50 35 26 45 36 7 10 36 M5 x 0.8 4.7 8 4.5 25.5 5 5 5 29 29 12 12 40 M6 x 1.0 52 10 5 28	Web cauge With any series With any series C D E H I K L M N 5 to 30 29 22 34 27 6 6 25 M3 x 0.5 32 5 3.5 15.5 3.5 15.5 3.5 15.5 3.5 15.5 3.5 15.5 3.5 15.5 3.6 17.0 10 36 M5 x 0.8 47 8 3.2 5 3.5 20 3.5 5 5.5 3.5 15.4 15.5 16.5 16.5	Ker range Windowald with wind wind wind wind wind wind wind wind	Ker range Withoutautus Withingtown Without Without Withingtown C D E H I K L M N OA OB 5 to 30 29 22 34 27 6 6 25 M3 x 0.5 32 5 3.5 15.5 3.5 M4 x 0.7 6.5 5 to 30 29 22 34 27 8 8 29 M4 x 0.7 38 6 3.5 15.5 3.5 M4 x 0.7 6.5 5 to 50 35 26 45 36 7 10 36 M5 x 0.8 4.7 8 4.5 25.5 5.4 M6 x 1.0 9 5 5 5 3.4 M6 x 1.0 9 5 5 5 5 5 4 M6 x 1.0 9 5 5 5 5 4 M6 x 1.0 9 5 5 5 5 5 4 M6 x 1.0 9 5 5 5 <th>Ker range Mitocalau service Virtual value service C D E H I K L M N OA OB Q 5 to 30 29 22 34 27 6 6 25 M3 x 0.5 32 5 3.5 15.5 3.5 M4 x 0.7 6.5 7.5 5 to 30 29 22 34 27 8 8 29 M4 x 0.7 38 6 3.5 20.5 M4 x 0.7 6.5 7.5 5 to 50 35 26 45 36 7 10 36 M5 x 0.8 4.7 8 4.5 25.5 5.4 M6 x 1.0 9 8 5 to 50 39 29 49 39 12 12 40 M6 x 1.0 52 10 5 28 5.4 M6 x 1.0 9 9</th> <th>Ker range Tild of all sector Tild of all sect</th> <th>Web range With Data and With and With and With Data and With</th>	Ker range Mitocalau service Virtual value service C D E H I K L M N OA OB Q 5 to 30 29 22 34 27 6 6 25 M3 x 0.5 32 5 3.5 15.5 3.5 M4 x 0.7 6.5 7.5 5 to 30 29 22 34 27 8 8 29 M4 x 0.7 38 6 3.5 20.5 M4 x 0.7 6.5 7.5 5 to 50 35 26 45 36 7 10 36 M5 x 0.8 4.7 8 4.5 25.5 5.4 M6 x 1.0 9 8 5 to 50 39 29 49 39 12 12 40 M6 x 1.0 52 10 5 28 5.4 M6 x 1.0 9 9	Ker range Tild of all sector Tild of all sect	Web range With Data and With and With and With Data and With

Note 1) For basic type ø20 and ø25 with 5 stroke, through-hole is threaded over the entire length.

Note 2) Rubber bumper type has the same dimensions as those indicated above Note 3) The positions of width across flats on both sides are not the same.

* For details about the rod end nut and accessory brackets, refer to page 809.

CQSW Series

Dimensions: ø12 to ø25

Foot type: CQSWL/CDQSWL

Foot Type

Bore size	Stroke range	Wit	hout a	uto sw	itch	W	/ith aut	o swit	ch		14	1.0	10	1.11	ιт	1.2	1.2	17	v	v
(mm)	(mm)	Α	A1	в	LS	Α	A A1 B LS			-			LG	гп		ᅛ	LI	12	^	I
12	5 to 30	49	70	22	10	54	75	27	15	13.5	24	4.5	2.8	17	2	34	29.5	44	8	4.5
16	5 to 30	49	73	22	10	54	78	27	15	13.5	25.5	4.5	2.8	19	2	38	33.5	48	8	5
20	5 to 50	55	83	26	14	65	93	36	24	14.5	28.5	6.6	4	24	3.2	48	42	62	9.2	5.8
25	5 to 50	59	94	29	14	69	104	39	24	15	32.5	6.6	4	26	3.2	52	46	66	10.7	5.8

Foot bracket material: Carbon steel Surface treatment: Nickel plated

Compact foot type: CQSWLC/CDQSWLC

Compact Foot Type

Bore size	Stroke range	Wit	hout a	uto sw	vitch	W	ith aut	o swit	ch		14		1.11	1.7	1.2	1.V	17	v	v
(mm)	(mm)	Α	A1	В	LS	Α	A1	В	LS		-		гп	L1	ᅛ	LT	LZ	^	T
12	5 to 30	49.3	70	22	40.6	54.3	75	27	45.6	13.5	24	4.5	17	2	15.5	29.5	25	9.3	4.5
16	5 to 30	49.8	73	22	40.6	54.8	78	27	45.6	13.5	25.5	4.5	19	2	20	33.5	29	9.3	5
20	5 to 50	59.5	83	26	52.4	69.5	93	36	62.4	14.5	28.5	6.6	24	3.2	25.5	42	36	13.2	5.8
25	5 to 50	63	94	29	55.4	73	104	39	65.4	15	32.5	6.6	26	3.2	28	46	40	13.2	5.8

* For details about the rod end nut and accessory brackets, refer to page 809.

Compact foot bracket material: Carbon steel Surface treatment: Zinc chromated

Dimensions: Ø12 to Ø25

Flange type: CQSWF/CDQSWF

L2

Flange Type

Bore size	Stroke range	Witho	ut auto :	switch	With	auto sv	vitch	ED	ET	EV	EV	57		14	1.2	12
(mm)	(mm)	Α	A1	В	A	A1	В		гі	FV	FA	F2		L.	L2	L3
12	5 to 30	39	60	22	44	65	27	4.5	5.5	25	45	55	13.5	3.5	24	14
16	5 to 30	39	63	22	44	68	27	4.5	5.5	30	45	55	13.5	3.5	25.5	15.5
20	5 to 50	45	73	26	55	83	36	6.6	8	39	48	60	14.5	4.5	28.5	18.5
25	5 to 50	49	84	29	59	94	39	6.6	8	42	52	64	15	5	32.5	22.5

* For details about the rod end nut and accessory brackets, refer to page 899. Note 1) The positions of width across flats on both sides are not the same.

Flange bracket material: Carbon steel Surface treatment: Nickel plated

L3 + Stroke

A1 + 2 (Stroke)

CQS Series Auto Switch Mounting

Proper Auto Switch Mounting Position (Detection at stroke end) and Its Mounting Height

Proper Auto Switch Mounting Position (Detection at stroke end)

Proper /	Auto	Swit	ch N	loun	ting	Posit	ion														
Auto switch	D-M	9□/M9	€DW	D-M9□\	//M9□WV	//M9⊡AV	E)-M9□	Α		D-A9]	[D-A9□	V		D-F8□]	D	-P3DW	/A
Bore size	Α	В	W	A	В	Hs	Α	В	W	A	В	W	Α	В	Hs	Α	В	Hs	Α	В	Hs
Single rod	: Basio	c type	, Singl	e actir	ng (Sp	ring re	turn/S	Spring	exten	d), Noi	n-rota	ting ro	d	[]: Den	otes the	values o	f D-A93	. (): Den	otes the	values c	of type T
12	5.5 (6.5)	3.5 (4.5)	5.5 (6.5)	5.5 (6.5)	4.5 (3.5)	19.5	5.5 (6.5)	4.5 (3.5)	7.5 (8.5)	1.5 (2.5)	0	1.5 [4] (2.5 [5])	1.5 (2.5)	0	17	3.5	2.5	27	-	-	-
16	6	4	6	6	4	21.5	6	4	8	2	0	2 [4.5]	2	0	19	4	2	29	-	—	-
20	10	7.5	2.5	10	7.5	25	10	7.5	4.5	6	3.5	-1.5 [1]	6	3.5	22.5	8.5	5	32.5	-	—	-
25	11	9.5	0.5	11	9.5	27	11	9.5	2.5	7	5.5	-3.5 [-1]	7	5.5	24.5	9	7.5	34.5	6.5	5	33
Long stro																					
12	9	11	-1	9	11	19.5	9	11	1	5	7	-5 [-2.5]	5	7	17	7	9	27	-	-	-
16	9.5	10.5	-0.5	9.5	10.5	21.5	9.5	10.5	1.5	5.5	6	-4.5 [-2]	5.5	6	19	7.5	8.5	29	-	—	-
20	13	16	-6	13	16	25	13	16	-4	9	12	-10 [-7.5]	9	12	22.5	11	14	32.5	-	_	-
25	14	18	-8	14	18	27	14	18	-6	10	14	-12 [-9.5]	10	14	24.5	12	16	34.5	9.5	13.5	33
Anti-later	al loa	d typ	е																		
12	10	5	5	10	5	19.5	10	5	7	6	1	1 [3.5]	6	1	17	8	3	27	-	_	-
16	9.5	5.5	4.5	9.5	5.5	21.5	9.5	5.5	6.5	5.5	1.5	0.5 [3]	5.5	1.5	19	7.5	3.5	29	-	-	-
20	13	9.5	0.5	13	9.5	25	13	9.5	2.5	9	5.5	-3.5 [-1]	9	5.5	22.5	11	7.5	32.5	-	-	-
25	14	11.5	-1.5	14	11.5	27	14	11.5	0.5	10	7.5	-5.5 [-3]	10	7.5	24.5	12	9.5	34.5	9.5	7	33
Double a	ctina:	Basi	c type	e. Nor	n-rota	tina r	od														

	-					-															
12	5.5	9.5	0.5	5.5	9.5	19.5	5.5	9.5	2.5	1.5	5.5	-3.5 [1]	1.5	5.5	17	3.5	7.5	27	-	—	—
16	6	9	1	6	9	21.5	6	9	3	2	5	-3 [-0.5]	2	5	19	4	7	29	—	-	—
20	10	14	-4	10	14	25	10	14	-2	6	10	-8 [-5.5]	6	10	22.5	8	12	32.5	-	_	_
25	11	16	-6	11	16	27	11	16	-4	7	12	-10 [-7.5]	7	12	24.5	9	14	34.5	6.5	11.5	33

Note 1) Negative figures in the table W indicate an auto switch is mounted inward from the edge of the cylinder body.

Note 2) The D-M9□/M9□W and M9□A cannot be installed on the single acting: single rod type

Note 3) Adjust the auto switch after confirming the operating conditions in the actual setting.

Note 4) The D-P3DWAD is available only for ø25.

Auto Switch Mounting CQS Series

Operating Range

				(mm					
Auto autitale availat	Bore size (mm)								
Auto switch model	12	16	20	25					
D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	3	4	5.5	5.5					
D-A9□/A9□V	6	7.5	10	10					
D-F8	2.5	3	4	4					
D-P3DWA	_	_	_	6					

 \ast Since this is a guideline including hysteresis, not meant to be guaranteed. (assuming approximately $\pm 30\%$ dispersion.) There may be the case it will vary substantially depending on an ambient environment.

Minimum Auto Switch Mounting Stroke

								(mm)
No. of auto switch mounted	D-M9⊡V	D-M9⊟WV D-M9⊡AV	D-A9□	D-A9⊡V	D-M9□	D-M9⊟W D-M9⊟A	D-F8 □	D-P3DWA
1 pc.	5	10	10 (5)	5	15 (5)	15 (10)	5	15
2 pcs.	5	10	10	10	15 (5)	15 (10)	5	15

Note 1) The D-M9□/M9□W/M9□A and P3DWA□ cannot be installed on the single acting: single rod type. Note 2) Available only for ø25.

Note 3) As the dimension stated in () shows the minimum mountable stroke when the auto switch does not project from the end face of the cylinder body and the lead wire bending space is not hindered, the auto switch needs to be ordered separately. (Refer to the figure below.)

∆Caution

Avoid proximity to magnetic objects.

 If the cylinder is used in an application in which a magnetic material is placed in close contact around the cylinder as shown in the graph on the right (including cases in which even one of the sides is in close contact) the operation of auto switches could become unstable. Therefore, please check with SMC for this type of application.

Other than the applicable auto switches listed in "How to Order", the following auto switches can be mounted. * Normally closed (NC = b contact) solid state auto switches (D-M9□E(V)) and solid state auto switch D-F8 are also available. For details, refer to pages 1289 and 1290. * For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to pages 1340 and 1341 for details.

APrecautions

Be sure to read this before handling the products.	- 1
Refer to page 20 for safety instructions and pages 21 to 30 for actuator and auto switch precautions.	

Made to Order: Individual Specifications 1

contact SMC for detailed dimensions. specifications and lead times.

1 Special Piston Rod End for Double Rod Type Cylinder

CQS Series

25

56.5 (66.5)

Symbol

-X525

5 to 50

Male thread is used at one piston rod end of double rod type cylinder and female thread is used at the other end.

Symbol
-X271

2 Fluororubber for Seals Material for seals is changed to fluororubber.

Fluororubber for seals

All series variations except non-rotating piston rod type of the CQS series is available. Specifications are the same as for each variation of CQS.

3 Long Stroke of Adjustable Extension Stroke Cylinder (-XC8)

C QS Mounting Bore size Stroke D(M) - X525

Specifications are the same as for -XC8 of the CO2/COS series Refer to "Made to Order Common Specifications". Note) For the tap mounting type (ø12 to ø25-without switch) and mounting bracket, please contact SMC.

ø12. ø16

ø20, ø25

ø12. ø16

Symbol		A				В					Applicable stroke	
Bore (mm)	35st	40st	45st	50st	35st	40st	45st	50st	U	-	Applicable slicke	
12	91.1 (96.1)	96.1 (101.1)	101.1 (106.1)	106.1 (111.1)	62 (67)	67 (72)	72 (77)	77 (82)	25.6	3.5	25 40 45 50	
16	91.5 (96.5)	96.5 (101.5)	101.5 (106.5)	106.5 (111.5)	62 (67)	67 (72)	72 (77)	77 (82)	26	3.5	35, 40, 45, 50	

a20 a25

Symbol	1	4	I	3				
Stroke Bore (mm)	55 to 75st	80 to 100st	55 to 75st	80 to 100st	с	L	Applicable stroke	
20	142.5 (152.5)	167.5 (177.5)	109 (119)	134 (144)	29	4.5	55 to 100	
25	146 (156)	171 (181)	112 (122)	137 (147)	29	5	55 10 100	

Note 1) (): Denotes dimensions with auto switch. Note 2) Applicable stroke is available in 5 mm increments.

Long stroke of XC9

Specifications are the same as for -XC9 of the CQS series. Refer to "Made to Order Common Specifications". Note) Please contact SMC for bracket type.

Dimensions

ø12, ø16

Symbol Bore (mm)	Α	в	L	BL	вм	Applicable stroke
12	69.8	37	3.5	29.3	M5 x 0.8	35, 40, 45, 50,
16	69.5	37	3.5	29	M6 x 1.0	75, 100
20	76	41	4.5	30.5	M8 x 1.25	75,100, 125, 150, 175, 200
25	78.5	44	5	29.5	M8 x 1.25	75, 100, 125, 150, 175, 200, 250, 300

Note 1) Intermediate stroke type (available in 5 mm increments) is for spacer so that dimensions are the same as for each type of 75, 100, 125, 150, 175, 200, 250, 300 stroke.

ø20, ø25

Standard model no. - X633

> * Specifications: Same as standard type. Note) Please contact SMC for bracket type

Dimensions

Symbol	C(D)QSW		C(D)QSKW						
Bore (mm)	Α	в	A	в	L	Stroke S1	Stroke S2		
12	29 (34)	22 (27)	34 (39)	27 (32)	3.5	In the case of 5 to 30	In the case of 6 to 29		
16	29 (34)	22 (27)	34 (39)	27 (32)	3.5	stroke 5 mm intervals	stroke 1 mm intervals		
20	35 (45)	26 (36)	40 (50)	31 (41)	4.5	In the case of 5 to 50	In the case of 6 to 49		
25	39 (49) 29 (39) 44 (54) 3		34 (44)	5	stroke 5 mm intervals	stroke 1 mm intervals			
Note 1) (): De	notes the	dimensions	with auto	switch.					

Note 2) Installing a spacer inside the standard cylinder tube, stroke S1 has 5 mm intervals for controlling intermediate strokes in 1 mm increments. Example) In the case of CDQ2WB40-18D, stroke S1 is 20 mm and stroke S2 is 18 mm.

CQS Series Made to Order: Individual Specifications 2 Please contact SMC for detailed dimensions, specifications and lead times.

Made to Order

Symbol

-X636

6 Long Stroke of Dual Stroke Single Rod Type

COQSB Bore size Stroke S1 + Stroke S2-S1 DC (M) - X636

> Long stroke of XC11

Applicable stroke	mm
Bore size	Stroke
ø12, ø16	Max. stroke S2: up to 50 mm
ø 20 , ø 25	Max. stroke S2: up to 100 mm

Specifications are the same as for -XC11 of the CQS series.

Refer to "Made to Order Common Specifications".

Note) Please contact SMC for tap mounting type and bracket mounting type.

Bore size: ø12, ø16

Bore size: ø12, ø16 mm												
Symbol		D .	р.		Stroke range							
Bore	A	DI	B2	L .	S1	\$2						
ø 12	62.5 (67.5) + Stroke (S1 + S2)	17 (22) + Stroke S1	32 + Stroke S ₂	13.5	5 to 30	35 to 50						
ø 16	62.5 (67.5) + Stroke (S1 + S2)	17 (22) + Stroke S1	32 + Stroke S ₂	13.5	5 to 30	35 to 50						

Bore size: ø20, ø25

mm Symbol Α B₂ Stroke range SIDKE Stroke S: Bı Stroke S2 L S1 S₂ 55 to 75 80 to 100 55 to 75 80 to 100 Bore 150 (160) 175 (185) 19.5 (29.5) ø**20** 116 141 14.5 5 to 50 55 to 100 + Stroke S1 + Stroke S1 + Stroke S 156.5 (166.5) 181.5 (191.5) 22.5 (32.5) ø**25** 144 15 5 to 50 55 to 100 119 + Stroke S1 + Stroke S1 + Stroke S

Note 1) (): Denotes the dimensions with auto switch.

Note 2) Applicable stroke is available in 5 mm increments.

