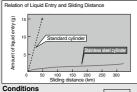
Stainless Steel Cylinder

CJ5-S Series CG5-S Series

ø10, ø16

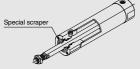
Ø20, Ø25, Ø32, Ø40, Ø50, Ø63, Ø80, Ø100

Applicable for use in an environment with water splashing such as food processing, etc.


For use with grease for food processing machines (Approved by NSF-H1)

All stainless steel specifications (External parts)

Stainless steel 304 is used for external metal parts. Corrosion resistance is improved even in environments with exposure to water.


Special scraper (Standard)

Prevents water from entering the cylinder.

Working fluid ·· Pressure · 0.5 MPa

Liquid --Water-soluble coolant Piston speed 200 mm/s Operating frequency--- 60 cpm

reduces residual liquid · Electropolishing of mounting

bracket surfaces makes them smoother to prevent build-up of liquids and foreign matter.

Exterior configuration

 Plugs are provided for unused mounting threads (CG5-S series) to prevent residue build-up in the threads

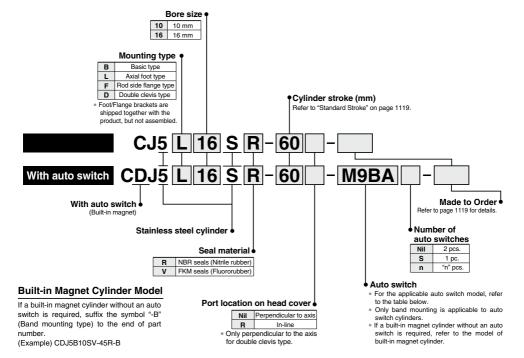
Two types of seal material

NBR or FKM can be selected to accommodate the application.

Can be disassembled (CG5-S series Ø20 to 40)

Since seals are replaceable, this extends the life of the cylinder.

(Before disassembly, be sure to refer to the section regarding maintenance under "Specific Product Precautions" on page 1139.)


This product cannot be used in the food zone. Refer to the Product Specific Precautions (page 1138) for details

Series Variations

Series	Seal	Turns					Bore si	ize (mm)				Applicable
Series	material	Туре	10	16	20	25	32	40	50	63	80	100	auto switch
CJ5-S	NBR	Single rod	- -	- -	+	+	+	+	+	+	+	+	Water resistant D-H7BAL
CG5-S	FKM	Single rod Double rod	#	#	8	\$	8	8	8	8	\$	8	Water resistant D-G5BAL

Stainless Steel Cylinder CJ5-S Series ø10, ø16

How to Order

Applicable Auto Switches/Refer to pages 1271 to 1365 for further information on auto switches.

			la di catan	145	Load	d voltage	Auto swite	ch model	Lead	wire I	ength	(m)*			
Тур	Type Special function	Electrical entry	Indicator light	Wiring (Output)		DC	Band mounting	g(ø10, ø16)	0.5	1	3	5	Pre-wired connector	Appli	
		01,	Ů	(-	Perpendicular	In-line	(Nil)	(M)	(L)	(Z)	CONTINUENT	ioau	
Sol				3-wire(NPN)		5 V. 12 V	M9NAV	M9NA	0	0	•	0	0	IC circuit	Delevi
stat			Yes	3-wire(PNP)	24 V	1 V 5 V, 12 V	M9PAV	M9PA	0	0	•	0	0	IC CIICUII	Relay, PLC
swit				2-wire		12 V	M9BAV	M9BA	0	0	•	0	0	-	. 20

* Lead wire length symbols: Nil------0.5 m (Example) D-M9NA

(Example) D-M9NAM M1 m (Example) D-M9NAL 13 m

(Example) D-M9NAZ Z5 m

• For details about auto switches with pre-wired connector, refer to pages 1340 and 1341.

Mounting Bracket Part No.

Marinting breaket	Bore siz	e (mm)	Description
Mounting bracket	10	16	Description
Foot	CJ-L016 Stainless steel	CJK-L016 Stainless steel	Foot x 1
Flange	CJ-F016 Stainless steel	CJK-F016 Stainless steel	Flange x 1
T-bracket *	CJ-T010 Stainless steel	CJ-T016 Stainless steel	T-bracket x 1

^{*} T-bracket is applicable to the double clevis type (D).

Grease pack for stainless steel cylinders/Part no.: GR-R-010 (10 g)

1118

* Solid state auto switches marked with "O" are produced upon receipt of order.

Stainless Steel Cylinder CJ5-S Series

Specifications

Symbol Double acting, Single rod, Rubber bumper

	ade to Order or details, refer to pages 1401 to 1567.)
Symbol	Specifications
-XA□	Change of rod end shape

Bore size (mm)	10	16								
Action	Double actin	g, Single rod								
Fluid	A	ir								
Proof pressure	1 M	Pa								
Maximum operating pressure	0.7 MPa									
Minimum operating pressure	0.11	MPa								
Ambient and fluid temperature	Without auto switch: -10 to 70°0	C With auto switch: −10 to 60°C								
Cushion	Rubber	bumper								
Lubrication	Not required									
Stroke length tolerance	+1	.0								
Piston speed	50 to 75	60 mm/s								
Allowable kinetic energy	0.035 J 0.090 J									
Mounting type	Basic type, Axial foot type, Rod side flange type, Double clevis type									

Standard Stroke

Bore size (mm)	Standard stroke	Maximum manufacturable stroke
10	15, 30, 45, 60, 75, 100, 125, 150	400
16	15, 30, 45, 60, 75, 100, 125, 150, 175, 200	400

^{*} Manufacture of intermediate strokes at 1 mm intervals is possible. (Spacers are not used.)

Mounting Type and Accessory

● ··· Supplied with the product. ○ ··· Please order separately.

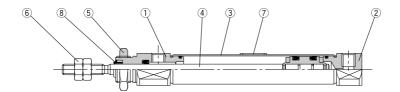
	Mounting	ı	Basic type	Axial foot type	Rod side flange type	Double clevis type *
rd art	Mounting nut		•	•	•	_
Standard	Rod end nut		•	•	•	•
Sts ab	Clevis pin		_	_	_	•
	Single knuckle joint		0	0	0	0
ے	Double knuckle joir	nt (With pin) *	0	0	0	0
Option	T-bracket		_	_	_	0
0	Rod end cap	Flat type	0	0	0	0
	nou enu cap	Round type	0	0	0	0

^{*} Pin and retaining ring are shipped together with double clevis and double knuckle joint.

\A/ - ! -- l- 4

Weig	jht		(g)
	Bore size (mm)	10	16
Basic	weight *	52	96
	nal weight per each 15 mm of stroke	4	6.5
ng eight	Axial foot type	22	22
Mounting bracket weight	Rod side flange type	16	16
M	Double clevis type (With pin) **	6	16

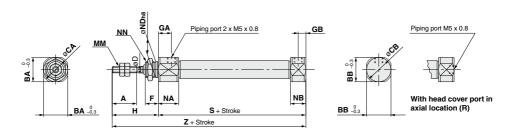
- * Mounting nut and rod end nut are included in the basic weight.
- ** Mounting nut is not included in double clevis type.
- Calculation: (Example) CJ5L10SR-45


- Cylinder stroke ------------- 45 stroke Mounting bracket weight-----22 g (Axial foot type)
 - 52 + 4/15 x 45 + 22 = 86 g

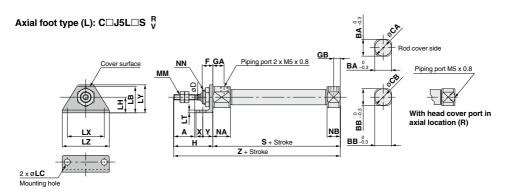
^{*} For the one with auto switch, refer to the minimum stroke for auto switch mounting. (P. 1136)

CJ5-S Series

Construction (Not able to disassemble.)

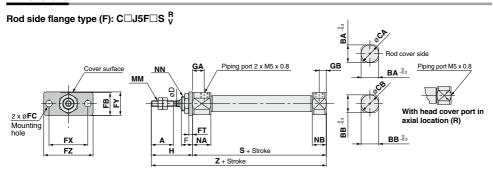

Component Parts

0011	iponent i arts		
No.	Description	Materia	al
1	Rod cover	Stainless ste	eel 304
2	Head cover	Stainless ste	eel 304
3	Cylinder tube	Stainless ste	eel 304
4	Piston rod	Stainless ste	eel 304
5	Mounting nut	Stainless ste	eel 304
6	Rod end nut	Stainless ste	eel 304
7	Label protector	PET	
8	Water resistant scraper	CJ5□□SR	NBR
0	water resistant scraper	CJ5□□SV	FKM

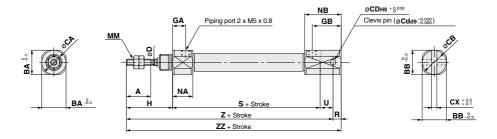

Note) Component part material and surface treatment other than listed above are the same as the standard type of the CJ2 series.

Dimensions

Basic type (B): C□J5B□S R


																		(mm)
Во	re size (mm)	А	ВА	вв	CA	СВ	D	F	GA	GB	н	ММ	NN	NA	NB	ND _{h8}	s	z
	10	15	15	12	17	14	4	8	8	5	28	M4 x 0.7	M10 x 1.0	12.5	9.5	10 _0.022	46	74
	16	15	18.3	18.3	20	20	5	8	8	5	28	M5 x 0.8	M12 x 1.0	12.5	9.5	12 _0.027	47	75

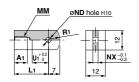
																									(mm)
Bore size (mm)	А	ва	вв	CA	СВ	D	F	GA	GВ	н	LB	LC	LH	LT	LX	LY	LZ	мм	NN	NA	NB	s	х	Υ	z
10	15	15	12	17	14	4	8	8	5	28	21.5	5.5	14	2.5	33	25	42	M4 x 0.7	M10 x 1.0	12.5	9.5	46	6	9	74
16	15	18.3	18.3	20	20	5	8	8	5	28	23	5.5	14	2.5	33	25	42	M5 x 0.8	M12 x 1.0	12.5	9.5	47	6	9	75


CJ5-S Series

Dimensions

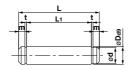
																						(mm)
Bore size (mm)	А	ва	вв	CA	СВ	D	F	FB	FC	FT	FX	FY	FZ	GA	GB	н	ММ	NN	NA	NB	s	z
10	15	15	12	17	14	4	8	17.5	5.5	2.5	33	20	42	8	5	28	M4 x 0.7	M10 x 1.0	12.5	9.5	46	74
16	15	18.3	18.3	20	20	5	8	19	5.5	2.5	33	20	42	8	5	28	M5 x 0.8	M12 x 1.0	12.5	9.5	47	75

Double clevis type (D): C□J5D□S R

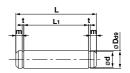


																				(mm)
В	ore size (mm)	А	ва	вв	CA	СВ	CD (Cd)	сх	D	GA	GВ	н	мм	NA	NB	R	s	U	z	zz
	10	15	15	12	17	14	3.3	3.2	4	8	18	28	M4 x 0.7	12.5	22.5	5	46	8	82	87
	16	15	18.3	18.3	20	20	5	6.5	5	8	23	28	M5 x 0.8	12.5	27.5	8	47	10	85	93

^{*} Clevis pin and retaining ring are shipped together.

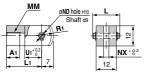

CJ5-S Series **Accessory Dimensions**

Single Knuckle Joint


Material: Stainless steel 30													
Part no.	Applicable bore size (mm)	A 1						U1					
I-J010SUS	10	8	21	M4 x 0.7	3.3 + 0.048	3.1	8	9					
I-J016SUS	16	8	25	M5 x 0.8	5 +0.048 0	6.4	12	14					

Clevis Pin

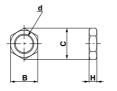
Material: Pin and retaining ring both stainless steel 304													
Part no. Applicable bore size (mm) Dd9 d L L1 m t Applicable retaining ring													
CD-J010)	10	3.3 -0.030	3	15.2	12.2	1.2	0.3	Type C 3.2				
CD-Z015S	US	16	5 -0.030 -0.060	4.8	22.7	18.3	1.5	0.7	Type C 5				
* Retainin	* Retaining rings are included.												


Knuckle Pin

Material: Pin and retaining ring both stainless steel 304												
Part no.	Applicable bore size (mm)	Dd9	d	L	L1	m	t	Applicable retaining ring				
CD-J010	10	3.3 -0.030	3	15.2	12.2	1.2	0.3	Type C 3.2				
IY-J015SUS	16	5 -0.030 -0.060	4.8	16.6	12.2	1.5	0.7	Type C 5				
			_	_								

- * Clevis pin is used instead for ø10.
- * Retaining rings are included.

Double Knuckle Joint

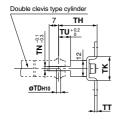


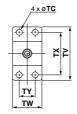
/ /	Shaft d9		_	1
Ri	-			- 5
A1 U1+02		12	-	VX + 8.2
Knuckle pin and retain	ina rina are		-	ed togethe
	5 5			

L1	7				12		
* Knuckle pir	and re	tain	ing rir	ng ar	e packag	ed togeth	er
			Mate	rial: S	Stainless	steel 304	
Part no.	Applicable bore size (mm)	A 1	L	L1	ММ	NDd9	
Y-J010SUS	10	8	15.2	21	M4 x 0.7	3.3 -0.030	

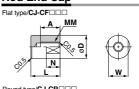
Y-J016SUS	16	11	16.6	21	M5 x (0.8	5	-0.030 -0.060
Part no.	NDH	10	NX	R1	U1			
Y-J010SUS	3.3 + 0.	048	3.2	8	10			
Y-J016SUS	5 +0.	048	6.5	12	10			

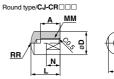
Mounting Nut


	Material: Stainless steel 304													
Part no.	Applicable bore size (mm)	В	С	d	н									
SNJ-016SUS	10	14	16.2	M10 x 1.0	4									
SNKJ-016SUS	16	17	19.6	M12 x 1.0	4									


Rod End Nut

Material: Stainless steel 304													
Part no.	Applicable bore size (mm)	В	С	d	Н								
NTJ-010SUS	10	7	8.1	M4 x 0.7	3.2								
NTJ-015SUS	16	8	9.2	M5 x 0.8	4								

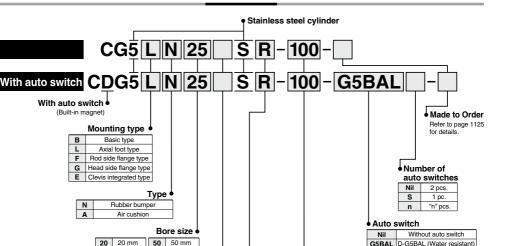

T-bracket



	Material: Stainless steel 304														
Part no.	Applicable bore size (mm)	тс	TDH10	тн	тк	TN	тт	TU	τv	тw	тх	TY			
CJ-T010SUS	10	4.5	3.3 + 0.048	29	18	3.1	2	9	40	22	32	12			
CJ-T016SUS	16	5.5	5 + 0.048	35	20	6.4	2.5	14	48	28	38	16			

Rod End Cap

Material: Polyacetal													
Part	Applicable bore size		_		мм		_	w					
Flat type Round type		(mm)	А	ט	-	IVIIVI			vv				
CJ-CF010						M4 x 0.7							
CJ-CF016	CJ-CR016	16	10	12	15	M5 x 0.8	7	12	10				


Stainless Steel Cylinder: Standard Type **Double Acting, Single Rod**

CG5-S Series

Ø20, Ø25, Ø32, Ø40, Ø50, Ø63, Ø80, Ø100

How to Order

Port thread type •

Rubber bumper ø20 to ø100 TN NPT ø20 to ø100 ø20, ø25 M5 x 0.8 TF ø32 to ø100

Air cushion M5 x 0.8 ø20. ø25 ø32 to ø100 M5 x 0.8 ø20, ø25 NPT ø32 to ø100 M5 x 0.8 ø20, ø25 ø32 to ø100

100 100 mm

Seal material **Built-in Magnet Cylinder Model** R NBR seals (Nitrile rubber)

Refer to "Standard Stroke" on page 1125.

mounting type only.

If a built-in magnet cylinder without an auto switch is required, there is no need to enter the symbol for the auto switch. (Example) CDG5BA40SV-100

G5BAL D-G5BAL (Water resistant)

Auto switches are available in the band

Applicable Auto Switches/Refer to pages 1271 to 1365 for further information on auto switches.

Туре	Special function	Electrical entry	Indicator light	Wiring (Output)			Auto switch	Lead wire I 3 (L)	ength (m)* 5 (Z)	Pre-wired connector	Applicable load
Solid state auto switch	Water resistant (2-color indicator)	Grommet	Yes	2-wire	24 V	12 V	G5BA	•	0	0	Relay, PLC

V FKM seals (Fluororubber)

25 mm

40 mm

25

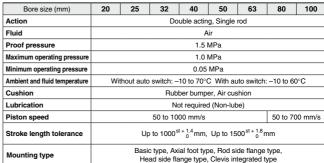
32 32 mm 63 63 mm

80 80 mm

Mounting Bracket Part No.

Mounting	Min.				Bore siz	ze (mm)				Description	
bracket	order	20	25	32	40	50 63		80	100	Description	
Axial foot	2 Note)	CG-L020SUS	CG-L025SUS	CG-L032SUS	CG-L040SUS	CG-L040SUS CG-L050SUS		CG-L080SUS	CG-L100SUS	Foot x 2 Bracket mounting bolt x 4	
Flange	1	CG-F020SUS	CG-F025SUS	CG-F032SUS	CG-F040SUS	CG-F050SUS	CG-F063SUS	CG-F080SUS	CG-F100SUS	Flange x 1 Bracket mounting bolt x 4	
Pivot bracket	1	CG-E0	20SUS	CG-E0	32SUS	CG-E0	50SUS	CG-E0	80SUS	Clevis pin x 1 Retaining ring x 2	

Note) When ordering the foot bracket, order 2 pcs. per cylinder.



^{*} Lead wire length symbols: 3 m (Example) G5BAL 5 m.....Z (Example) G5BAZ

^{*} Solid state auto switches marked with "O" are produced upon receipt of order.

[•] For details about auto switches with pre-wired connector, refer to pages 1340 and 1341.

Stainless Steel Cylinder: Standard Type Double Acting, Single Rod CG5-S Series

Standard Stroke

(mm)

Bore size	Standard stroke Note 1)	Manufacturable stroke Note 2)
20	25, 50, 75, 100, 125, 150, 200	1 to 1500
25		
32		
40		
50	25, 50, 75, 100, 125, 150, 200, 250, 300	1 to 1500
63	130, 230, 230, 000	
80		
100		

Note 1) Other intermediate strokes can be manufactured upon receipt of order. Manufacture of intermediate strokes in 1 mm increments is possible. (Spacers are not used.)

Note 2) Applicable strokes should be confirmed according to the usage. For details, refer to "Air Cylinders Model Selection" on pages 8 to 19. In addition, the products that exceed the standard stroke might not be able to fulfill the specifications due to the deflection etc.

Specifications

at the same of the

Symbol

Double acting, Single rod, Rubber bumper

Cyllibol	Ороспісалогіз
-XA□	Change of rod end shape
-XB6	Heat resistant cylinder (150°C)*
* Heat re	sistant grease (non-food grease) is used.

Refer to page 1136 for cylinders with auto switches.

- · Auto switch proper mounting position (detection at stroke end) and its mounting height
- · Minimum stroke for auto switch mounting
- Auto switch mounting brackets/Part no.
- Operating range
- Cylinder mounting bracket, by stroke/Auto switch mounting surfaces

Accessory/For details, refer to page 1135.

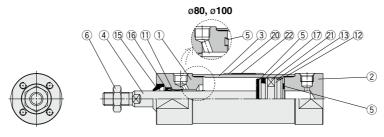
		Supplied	with the pr	oduct. O···F	Please order	separately
	Mounting	Basic type	Axial foot type	Rod side flange type	Head side flange type	Clevis integrated type
Standard equipment	Rod end nut	•	•	•	•	•
	Single knuckle joint	0	0	0	0	0
Option	Double knuckle joint (With pin & retaining ring)	0	0	0	0	0
	Pivot bracket (With pin and retaining ring)	_	_	_	_	0

Weight

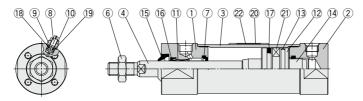
									(kg)
	Bore size (mm)	20	25	32	40	50	63	80	100
重	Basic type	0.34	0.42	0.59	1.03	1.84	2.81	5.27	8.25
weight	Axial foot type	0.49	0.59	0.77	1.25	2.24	3.35	6.05	9.70
Basic	Flange type	0.44	0.51	0.69	1.16	2.16	3.28	5.86	9.30
8	Clevis integrated type	0.40	0.48	0.72	1.21	2.30	3.40	6.83	10.28
Piv	ot bracket	0.08	0.08	0.18	0.18	0.46	0.46	1.65	1.65
Sir	igle knuckle joint	0.04	0.07	0.07	0.11	0.22	0.22	0.53	0.78
Do	uble knuckle joint (with pin)	0.05	0.09	0.09	0.18	0.33	0.33	0.73	1.07
Add	litional weight per each 50 mm of stroke	0.06	0.08	0.14	0.18	0.27	0.33	0.50	0.73
Ad	ditional weight with air cushion	0.02	0.02	0.02	0.02	0.05	0.10	0.22	0.24

To calculate the theoretical output, refer to the "Theoretical Output Table" on page 1575 after confirming the bore size of the tubing and the piston rod size.

- Basic weight-----..... 0.49 kg (Foot type ø20)
- Additional stroke weight 0.06 kg/50 ST
- Air cylinder stroke 100 ST · Additional air cushion weight ···· 0.02 kg
- $0.49 + 0.06 \times 100/50 + 0.02 = 0.63 \text{ kg}$


(Foot type ø20, 100 stroke)

Calculation: (Example) CG5LA 20SR-100


CG5-S Series

Construction

With rubber bumper

With air cushion

Component Parts

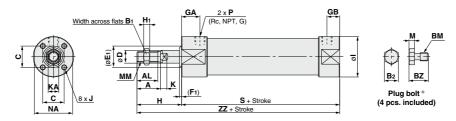
No.	Description	Material	Note
1	Rod cover	Stainless steel	
2	Head cover	Stainless steel	
3	Cylinder tube	Stainless steel	
4	Piston rod	Stainless steel	Hard chrome plated
5	Bumper	Urethane	
6	Rod end nut	Stainless steel	
7	Cushion seal	Urethane	
8	Cushion valve	Stainless steel	
9	Valve retainer	Stainless steel	
10	Lock nut	Stainless steel	
11	Bushing	Bearing alloy	
12	Piston	Aluminum alloy	
13	Wearing	Resin	
14	Cushion ring	Aluminum alloy	

No.	Description	Material								
INO.	Description	CG5□□□SR	CG5□□□SV							
15	Water resistant scraper									
16	Rod seal									
17	Piston seal	NBR	FKM							
18	Valve seal									
19	Valve retainer gasket									
20	Label protector	PE	ΕT							
21	Magnet	-	_							
22	Label	-	_							
	-									

Replacement Parts/Seal Kit

Dana sina (mm)	Rubber t	oumper	Air cushion							
Bore size (mm)	CG5□N□SR	CG5□N□SV	CG5□A□SR	CG5□A□SV						
20	CG5N20SR-PS	CG5N20SV-PS	CG5A20SR-PS	CG5A20SV-PS						
25	CG5N25SR-PS	CG5N25SV-PS	CG5A25SR-PS	CG5A25SV-PS						
32	CG5N32SR-PS	CG5N32SV-PS	CG5A32SR-PS	CG5A32SV-PS						
40	CG5N40SR-PS	CG5N40SV-PS	CG5A40SR-PS	CG5A40SV-PS						
Contents	Set of 16 an	d ⑦ above	Set of 16, 17, 18	and (9 above						

As sizes ø50 and larger cannot be disassembled, the seal cannot be replaced. (Refer to page 1139 for details.)
 Seal kit includes a grease pack (10 g).
 Order with the following part number when only the grease pack is needed.
 Grease pack for stainless steel cylinders/Part no.: GR-R-010 (10 g)

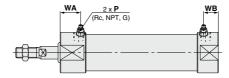


Note 1) Component part material and surface treatment other than listed above are the same as the standard type of the CG1 series.

Note 2) For cylinders with an auto switch, the piston is fixed with a magnet.

Dimensions

Basic type (B): C□G5BN□S N: With rubber bumper

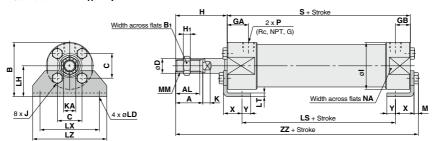

															(mm)											
Bore size	Stroke range	A	AL	B1	B ₂	ВМ	ΒZ	С	D	E1	F1	GA	GB	н	I H1 I J K KA M MM NA		NA	F	s	zz						
(mm)	Standard																						Rc, NPT	G		
20		18	15.5	13	7	M4 x 0.7	9	16.5	8	15	3	18	12	35	5	31	M4 x 0.7 depth 7	5	6	3	M8 x 1.25	29	1/8	M5 x 0.8	83	118
25	1	22	19.5	17	8	M5 x 0.8	9.5	18.5	10	17	3	18	12	40	6	33	M5 x 0.8 depth 8	5.5	8	3.5	M10 x 1.25	29	1/8	M5 x 0.8	83	123
32]	22	19.5	17	8	M5 x 0.8	9.5	20	12	19	3	18	12	40	6	38	M5 x 0.8 depth 8	5.5	10	3.5	M10 x 1.25	35.5	1/8	1/8	85	125
40	1	30	27	19	10	M6 x 1.0	12	26	16	23	3	19	13	50	8	47	M6 x 1.0 depth 12	6	14	4	M14 x 1.5	44	1/8	1/8	93	143
50	Up to 1500	35	32	27	13	M8 x 1.25	15.5	32	20	28	3	21	14	58	11	58	M8 x 1.25 depth 16	7	18	5.5	M18 x 1.5	55	1/4	1/4	109	167
63	1	35	32	27	17	M10 x 1.5	19	38	20	28	3	21	14	58	11	72	M10 x 1.5 depth 16	7	18	7	M18 x 1.5	69	1/4	1/4	109	167
80	1	40	37	32	17	M10 x 1.5	19	50	25	33	3	28	20	71	13	89	M10 x 1.5 depth 22	10	22	7	M22 x 1.5	80	3/8	3/8	130	201
100]	40	37	41	19	M12 x 1.75	24	60	30	38	3	29	20	71	16	110	M12 x 1.75 depth 23	10	26	8	M26 x 1.5	100	1/2	1/2	131	202

^{*} Install plug bolts, which are included, in any unused mounting holes.

Basic type (B): C□G5BA□S ^R_V: With air cushion

(mm)

Plug bolt* (4 pcs. included)

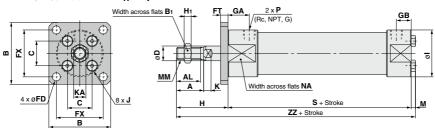

Bore size	Stroke range	Р	WA	wB	wн	Wθ
(mm)	Standard	Rc, NPT, G	1			
20		M5 x 0.8	22	16	23	30°
25		M5 x 0.8	22	16	25	30°
32		1/8	22	16	28.5	25°
40	Up to 1500	1/8	24	18	33	20°
50	Op 10 1300	1/4	27	20	40.5	20°
63		1/4	25	18	47.5	20°
80		3/8	30	22	60.5	20°
100		1/2	31	22	71	20°

^{*} Install plug bolts, which are included, in any unused mounting holes.

CG5-S Series

Dimensions

Axial foot type (L): C□G5L N□S R


																								(mm)
Bore size (mm)	Stroke range Standard	А	AL	B1	В	С	D	GA	GВ	н	H1	ı	J	к	КА	LD	LH	LS	LT	LX	LZ	М	ММ	NA
20		18	15.5	13	37.5	16.5	8	18	12	35	5	31	M4 x 0.7	5	6	6	22	59	3	40	50	3	M8 x 1.25	29
25]	22	19.5	17	41.5	18.5	10	18	12	40	6	33	M5 x 0.8	5.5	8	6	25	59	3	44	60	3.5	M10 x 1.25	29
32		22	19.5	17	44	20	12	18	12	40	6	38	M5 x 0.8	5.5	10	7.2	25	59	3	44	60	3.5	M10 x 1.25	35.5
40	Up to 1500	30	27	19	53.5	26	16	19	13	50	8	47	M6 x 1.0	6	14	7.2	30	66	3	54	75	4	M14 x 1.5	44
50	Up to 1500	35	32	27	69	32	20	21	14	58	11	58	M8 x 1.25	7	18	10	40	74	4	66	90	5.5	M18 x 1.5	55
63		35	32	27	81	38	20	21	14	58	11	72	M10 x 1.5	7	18	12	45	74	4	82	110	7	M18 x 1.5	69
80		40	37	32	99.5	50	25	28	20	71	13	89	M10 x 1.5	10	22	12	55	82	4	100	130	7	M22 x 1.5	80
100]	40	37	41	125	60	30	29	20	71	16	110	M12 x 1.75	10	26	14	70	83	6	120	160	8	M26 x 1.5	100

^{*} Foot brackets and plug bolts are installed when shipped from factory.

Note 1) ø20 and ø25 cylinders with an air cushion: M5 x 0.8 Note 2) Refer to the basic type (B)/CG5BA \Box S* for the dimensions of air cushion needles.

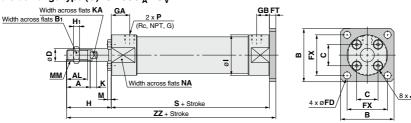
						(111111)
Bore size	ı	•	s	х	Υ	ZZ
(mm)	Rc, NPT	G				
20	1/8 (1)	M5 x 0.8	83	15	7	124
25	1/8 (1)	M5 x 0.8	83	15	7	129.5
32	1/8	1/8	85	16	6	131.5
40	1/8	1/8	93	16.5	6.5	150
50	1/4	1/4	109	21.5	11.5	176.5
63	1/4	1/4	109	21.5	11.5	178
80	3/8	3/8	130	28	17	212
100	1/2	1/2	131	30	15	216

Rod side flange type (F): $C \square G5F_{\Delta}^{N} \square S_{V}^{R}$

Bore size	Stroke range	A	AL	B1	В	С	D	FX	FD	FT	GA	GВ	н	H1	ı	J	К	KA	М	ММ	NA	ı	P	s	zz
(mm)	Standard																					Rc, NPT	G		
20		18	15.5	13	50	16.5	8	36	5.5	6	18	12	35	5	31	M4 x 0.7	5	6	3	M8 x 1.25	29	1/8 (1)	M5 x 0.8	83	121
25		22	19.5	17	50	18.5	10	36	5.5	6	18	12	40	6	33	M5 x 0.8	5.5	8	3.5	M10 x 1.25	29	1/8 (1)	M5 x 0.8	83	126.5
32		22	19.5	17	50	20	12	38	6.6	6	18	12	40	6	38	M5 x 0.8	5.5	10	3.5	M10 x 1.25	35.5	1/8	1/8	85	128.5
25 32 40	Up to 1500	30	27	19	60	26	16	46	6.6	6	19	13	50	8	47	M6 x 1.0	6	14	4	M14 x 1.5	44	1/8	1/8	93	147
50	Op 10 1300	35	32	27	75	32	20	58	9	9	21	14	58	11	58	M8 x 1.25	7	18	5.5	M18 x 1.5	55	1/4	1/4	109	172.5
63		35	32	27	90	38	20	70	11	9	21	14	58	11	72	M10 x 1.5	7	18	7	M18 x 1.5	69	1/4	1/4	109	174
80		40	37	32	100	50	25	82	11	9	28	20	71	13	89	M10 x 1.5	10	22	7	M22 x 1.5	80	3/8	3/8	130	208
100		40	37	41	125	60	30	100	14	10	29	20	71	16	110	M12 x 1.75	10	26	8	M26 x 1.5	100	1/2	1/2	131	210

^{*} Flange bracket and plug bolt are installed when shipped from factory. Note 1) Ø20 and Ø25 cylinders with an air cushion: M5 x 0.8

Note 2) Refer to the basic type (B)/CG5BA S* for the dimensions of air cushion needles.

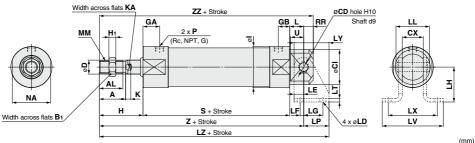


(mm)

Stainless Steel Cylinder: Standard Type Double Acting, Single Rod CG5-S Series

Dimensions

Head side flange type (G): C□G5G A□SV



Bore size	Stroke range	А	AL	B ₁	В	С	D	FX	FD	FT	GA	GВ	н	H1	ı	J	ĸ	KA	М	ММ	NA	ı	•	s	zz
(mm)	Standard																					Rc, NPT	G		
20		18	15.5	13	50	16.5	8	36	5.5	6	18	12	35	5	31	M4 x 0.7	5	6	3	M8 x 1.25	29	1/8 (1)	M5 x 0.8	83	124
25		22	19.5	17	50	18.5	10	36	5.5	6	18	12	40	6	33	M5 x 0.8	5.5	8	3.5	M10 x 1.25	29	1/8 (1)	M5 x 0.8	83	129
32		22	19.5	17	50	20	12	38	6.6	6	18	12	40	6	38	M5 x 0.8	5.5	10	3.5	M10 x 1.25	35.5	1/8	1/8	85	131
40	Up to 1500	30	27	19	60	26	16	46	6.6	6	19	13	50	8	47	M6 x 1.0	6	14	4	M14 x 1.5	44	1/8	1/8	93	149
50	Op 10 1300	35	32	27	75	32	20	58	9	9	21	14	58	11	58	M8 x 1.25	7	18	5.5	M18 x 1.5	55	1/4	1/4	109	176
63		35	32	27	90	38	20	70	11	9	21	14	58	11	72	M10 x 1.5	7	18	7	M18 x 1.5	69	1/4	1/4	109	176
80		40	37	32	100	50	25	82	11	9	28	20	71	13	89	M10 x 1.5	10	22	7	M22 x 1.5	80	3/8	3/8	130	210
100		40	37	41	125	60	30	100	14	10	29	20	71	16	110	M12 x 1.75	10	26	8	M26 x 1.5	100	1/2	1/2	131	212

^{*} Foot brackets and plug bolts are installed when shipped from factory.

Note 1) ø20 and ø25 cylinders with an air cushion: M5 x 0.8 Note 2) Refer to the basic type (B)/CG5BA S* for the dimensions of air cushion needles.

Integrated clevis type (E): C□G5E NUSP

Bore size	Stroke range	Α	AL	B ₁	CD(Hole)	СІ	сх	D	GA	GB	н	H1	ı	к	KA	L	ММ	NA	ı	-	RR	s	U	z
(mm)	Standard																		Rc, NPT	G				
20		18	15.5	13	8 +0.058	25	16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	18	12	35	5	31	5	6	14	M8 x 1.25	29	1/8 (1)	M5 x 0.8	9	83	13	132
25		22	19.5	17	8 +0.058	27	16_0.2	10	18	12	40	6	33	5.5	8	14	M10 x 1.25	29	1/8 (1)	M5 x 0.8	9	83	13	137
32]	22	19.5	17	10 +0.058	32	24_0.2	12	18	12	40	6	38	5.5	10	16	M10 x 1.25	35.5	1/8	1/8	11	85	15	141
40	Up to 1500	30	27	19	10 +0.058	40	24 _0.2	16	19	13	50	8	47	6	14	16	M14 x 1.5	44	1/8	1/8	11	93	15	159
50	Op 10 1300	35	32	27	14 +0.070	50	40 _0.2	20	21	14	58	11	58	7	18	22	M18 x 1.5	55	1/4	1/4	15	109	21	189
63]	35	32	27	14 +0.070	60	40_02	20	21	14	58	11	72	7	18	22	M18 x 1.5	69	1/4	1/4	15	109	21	189
80]	40	37	32	22 +0.084	75	60_0.3	25	28	20	71	13	89	10	22	33	M22 x 1.5	80	3/8	3/8	23	130	32	234
100	1 1	40	37	41	22 +0.084	90	60_03	30	29	20	71	16	110	10	26	33	M26 x 1.5	100	1/2	1/2	23	131	32	235

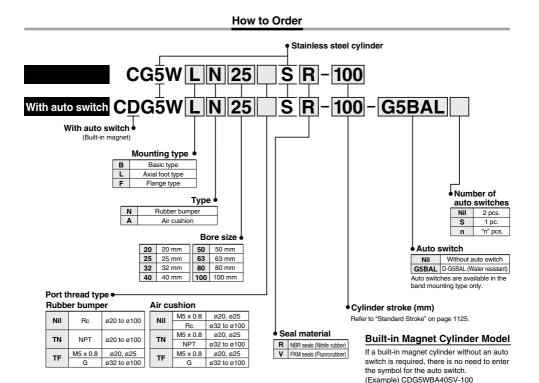
															(mm)
Bore size (mm)	zz	Pivot bracket	CD(Shaft)	LD	LE	LF	LG	LH	LL	LP	LT	LV	LX	LY	LZ
20	141	CG-E020SUS	8 -0.040	7	9	2	14	30	27.6	21	3	56.5	42	30	153
25	146	CG-E020SUS	8 -0.040	7	9	2	14	30	27.6	21	3	56.5	42	30	158
32	152	CG-E032SUS	10 -0.040	7	11	4	22	40	38.4	29	4	70.5	56	40	170
40	170	CG-E032SUS	10 -0.040	7	11	4	22	40	38.4	29	4	70.5	56	40	188
50	204	CG-E050SUS	14 -0.050	12	15	5	25	50	59.6	35	6	106.5	84	50	224
63	204	CG-E050SUS	14 -0.050	12	15	5	25	50	59.6	35	6	106.5	84	50	224
80	257	CG-E080SUS	22 -0.065	14	23	6	40	80	87.2	57	9	144.5	120	80	291
100	258	CG-E080SUS	22 -0.065	14	23	6	40	80	87.2	57	9	144.5	120	80	292

* There is no plug bolt.

needles.

- * There is no mounting tap on the rod cover side.
- * Pivot bracket (with clevis pin and snap ring) are optional. (Not included.)

Note 1) ø20 and ø25 cylinders with an air cushion: M5 x 0.8 Note 2) Refer to the basic type
(B)/CG5BA\subseteq S* for the dimensions of air cushion


(mm)

Stainless Steel Cylinder: Standard Type Double Acting, Double Rod

CG5W-S Series

Ø20, Ø25, Ø32, Ø40, Ø50, Ø63, Ø80, Ø100

Applicable Auto Switches/Refer to pages 1271 to 1365 for further information on auto switches.

Туре	Special function	Electrical entry	Indicator light	Wiring (Output)	Load voltage DC	Auto switch model	Lead wire I 3 (L)	ength (m)* 5 (Z)	Pre-wired connector	Applicable load
Solid state auto switch	Water resistant (2-color indicator)	Grommet	Yes	2-wire	24 V 12 V	G5BA	•	0	0	Relay, PLC

^{*} Lead wire length symbols: 3 m-----L (Example) G5BAL 5 m-----Z (Example) G5BAZ

Mounting Bracket Part No.

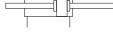
Mounting	Min.				Bore siz	ze (mm)				Description
bracket	order	20	25	32	40	50	63	80	100	Description
Axial foot	2 Note)	CG-L020SUS	CG-L025SUS	CG-L032SUS	CG-L040SUS	CG-L050SUS	CG-L063SUS	CG-L080SUS	CG-L100SUS	Foot x 2 Bracket mounting bolt x 4
Flange	1	CG-F020SUS	CG-F025SUS	CG-F032SUS	CG-F040SUS	CG-F050SUS	CG-F063SUS	CG-F080SUS	CG-F100SUS	Flange x 1 Bracket mounting bolt x 4

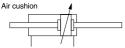
Note) When ordering the foot bracket, order 2 pcs. per cylinder.

^{*} Solid state auto switches marked with "O" are produced upon receipt of order.

[•] For details about auto switches with pre-wired connector, refer to pages 1340 and 1341.

Stainless Steel Cylinder: Standard Type CG5-S Series




Specifications

Bore size (mm)	20	25	32	40	50	63	80	100			
Action			Do	uble acting	g, Double	rod					
Fluid				Α	ir						
Proof pressure				1.5	MРа						
Maximum operating pressure				1.0	MРа						
Minimum operating pressure											
Ambient and fluid temperature	Without auto switch: -10 to 70°C With auto switch: -10 to 60°C										
Cushion			Rub	ber bump	er, Air cus	shion					
Lubrication			No	ot required	d (Non-lub	e)					
Piston speed			50 to 10	00 mm/s			50 to 70	00 mm/s			
Stroke length tolerance	Up to 1000 st + 1.4 mm, Up to 1500 st + 1.8 mm										
Mounting type Basic type, Axial foot type, Flange type											

Symbol

Standard Stroke

(mm)

Bore size	Standard stroke Note 1)	Manufacturable stroke Note 2)
20	25, 50, 75, 100, 125, 150, 200	1 to 1500
25		
32		
40	05 50 55 400 405	
50	25, 50, 75, 100, 125, 150, 200, 250, 300	1 to 1500
63	130, 200, 230, 300	
80		
100		

Note 1) Other intermediate strokes can be manufactured upon receipt of order. Manufacture of intermediate strokes in 1 mm increments is possible. (Spacers are not used.)

Note 2) Applicable strokes should be confirmed according to the usage. For details, refer to "Air Cylinders Model Selection" on pages 8 to 19. In addition, the products that exceed the standard stroke might not be able to fulfill the specifications due to the deflection etc.

Refer to page 1136 for cylinders with auto switches.

- Auto switch proper mounting position (detection at stroke end) and its mounting height
- Minimum stroke for auto switch mounting
 Auto switch mounting brackets/Part no.
- Operating range
- Cylinder mounting bracket, by stroke/Auto switch mounting surfaces

Accessory/For details, refer to page 1135.

	●···Supplie	ed with the produ	uct. OPlease	order separately.
	Mounting	Basic type	Axial foot type	Flange type
Standard equipment	Rod end nut	•	•	•
Option	Single knuckle joint	0	0	0
Option	Double knuckle joint (With pin & retaining ring)	0	0	0

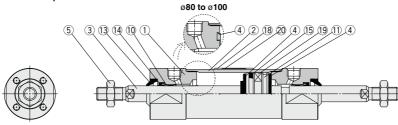
Weight

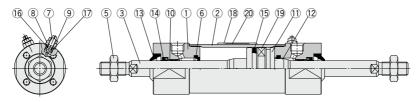
(F

	Bore size (mm)	20	25	32	40	50	63	80	100
weight	Basic type	0.39	0.48	0.68	1.18	2.15	3.24	6.03	9.48
c we	Axial foot type	0.54	0.65	0.86	1.40	2.55	3.78	6.80	10.93
Basic	Flange type	0.49	0.57	0.77	1.32	2.47	3.71	6.62	10.52
Sir	igle knuckle joint	0.04	0.07	0.07	0.11	0.22	0.22	0.53	0.78
Do	uble knuckle joint (with pin)	0.05	0.09	0.09	0.18	0.33	0.33	0.73	1.07
Add	litional weight per each 50 mm of stroke	0.06	0.08	0.14	0.18	0.27	0.33	0.50	0.73
Ad	ditional weight with air cushion	0.02	0.02	0.02	0.02	0.05	0.10	0.22	0.24

al output, Calculation: (Example) CG5WLA 20SR-100
(Foot type Ø20, 100 stroke)

- Additional stroke weight 0.06 kg/50 ST
 Air cylinder stroke 100 ST
- Additional air cushion weight ····· 0.02 kg
 0.54 + 0.06 x 100/50 + 0.02 = 0.68 kg


To calculate the theoretical output, refer to the "Theoretical Output Table" on page 1575 after confirming the bore size of the tubing and the piston rod size.


CG5W-S Series

Construction

With rubber bumper

With air cushion

Component Parts

No.	Description	Material	Note
1	Rod cover	Stainless steel	
2	Cylinder tube	Stainless steel	
3	Piston rod	Stainless steel	Hard chrome plated
4	Bumper	Urethane	
5	Rod end nut	Stainless steel	
6	Cushion seal	Urethane	
7	Cushion valve	Stainless steel	
8	Valve retainer	Stainless steel	
9	Lock nut	Stainless steel	
10	Bushing	Bearing alloy	
11	Piston	Aluminum alloy	
12	Cushion ring	Aluminum alloy	
	1) 0		discoult on Para Laborator

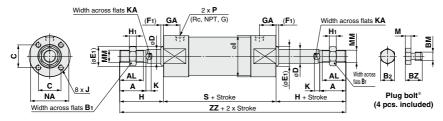
No.	Description	Mate	erial
INO.	Description	CG5□□□SR	CG5□□□SV
13	Water resistant scraper		
14	Rod seal		
15	Piston seal	NBR	FKM
16	Valve seal		
17	Valve retainer gasket		
18	Label protector	PE	ΕT
19	Magnet	-	_
20	Label	-	_

Note 1) Component part material and surface treatment other than listed above are the same as the standard type of the CG1 series.

Note 2) For cylinders with an auto switch, the piston is fixed with a magnet.

Replacement Parts/Seal Kit

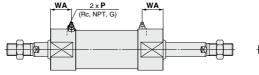
Bore size	Rubber	bumper	Air cu	shion
(mm)	CG5W□N□SR	CG5W□N□SV	CG5W□A□SR	CG5W□A□SV
20	CG5WN20SR-PS	CG5WN20SV-PS	CG5WA20SR-PS	CG5WA20SV-PS
25	CG5WN25SR-PS	CG5WN25SV-PS	CG5WA25SR-PS	CG5WA25SV-PS
32	CG5WN32SR-PS	CG5WN32SV-PS	CG5WA32SR-PS	CG5WA32SV-PS
40	CG5WN40SR-PS	CG5WN40SV-PS	CG5WA40SR-PS	CG5WA40SV-PS
Contents	(4 (two), (5 (one) + G	rease pack: GR-R-010	(14) (two), (15) (one), + Grease page	


As sizes o50 and larger cannot be disassembled, the seal cannot be replaced. (Refer to page 1139 for details.)
 Seal kit includes a grease pack (10 g).
 Order with the following part number when only the grease pack is needed.
 Grease pack for stainless steel cylinders/Part no.: GR-R-010 (10 g)

Stainless Steel Cylinder: Standard Type Double Acting, Double Rod CG5W-S Series

Dimensions

Basic type (B): $C \square G5WBN \square S_V^R$: With rubber bumper

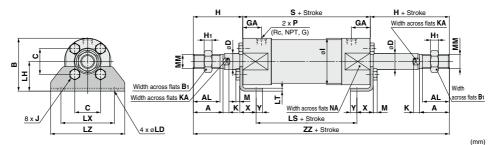


																									(111111)
Bore size	Stroke range (mm)	А	AL	B1	B ₂	вм	BZ	С	D	E1	F1	GA	н	H1		J	к	KA	м	мм	NA	ı	•	s	zz
(mm)	Standard																					Rc, NPT	G		
20		18	15.5	13	7	M4 x 0.7	9	16.5	8	15	3	18	35	5	31	M4 x 0.7 depth 7	5	6	3	M8 x 1.25	29	1/8	M5 x 0.8	89	159
25		22	19.5	17	8	M5 x 0.8	9.5	18.5	10	17	3	18	40	6	33	M5 x 0.8 depth 8	5.5	8	3.5	M10 x 1.25	29	1/8	M5 x 0.8	89	169
32]	22	19.5	17	8	M5 x 0.8	9.5	20	12	19	3	18	40	6	38	M5 x 0.8 depth 8	5.5	10	3.5	M10 x 1.25	35.5	1/8	1/8	91	171
40	Up to	30	27	19	10	M6 x 1.0	12	26	16	23	3	19	50	8	47	M6 x 1.0 depth 12	6	14	4	M14 x 1.5	44	1/8	1/8	99	199
50	1500	35	32	27	13	M8 x 1.25	15.5	32	20	28	3	21	58	11	58	M8 x 1.25 depth 16	7	18	5.5	M18 x 1.5	55	1/4	1/4	116	232
63]	35	32	27	17	M10 x 1.5	19	38	20	28	3	21	58	11	72	M10 x 1.5 depth 16	7	18	7	M18 x 1.5	69	1/4	1/4	116	232
80	1	40	37	32	17	M10 x 1.5	19	50	25	33	3	28	71	13	89	M10 x 1.5 depth 22	10	22	7	M22 x 1.5	80	3/8	3/8	138	280
100	1	40	37	41	19	M12 x 1.75	24	60	30	38	3	29	71	16	110	M12 x 1.75 depth 23	10	26	8	M26 x 1.5	100	1/2	1/2	140	282

^{*} Install plug bolts, which are included, in any unused mounting holes.

Basic type (B): C□G5WBA□S^R_V: With air cushion

Plug bolt* (4 pcs. included)

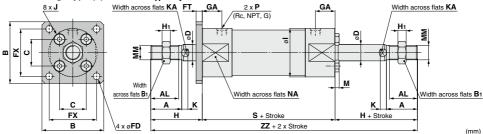

					(mm)
Bo		Stroke range (mm)	Р	WA	WH	W 0
(m	m)	Standard	Rc, NPT, G			
_2	20		M5 x 0.8	22	23	30°
- 2	25		M5 x 0.8	22	25	30°
3	32		1/8	22	28.5	25°
-	10	Up to	1/8	24	33	20°
_ {	50	1500	1/4	27	40.5	20°
•	63		1/4	25	47.5	20°
_ {	30		3/8	30	60.5	20°
10	00		1/2	31	71	20°

^{*} Install plug bolts, which are included, in any unused mounting holes.

CG5W-S Series

Dimensions

Axial foot type (L): C□G5WL A□S R


Bore size (mm)	Stroke range (mm) Standard		AL	B1	В	С	D	GA	н	H1	ı	J	ĸ	KA	LD	LH	LS	LT	LX	LZ	М	ММ	NA
20		18	15.5	13	37.5	16.5	8	18	35	5	31	M4 x 0.7	5	6	6	22	65	3	40	50	3	M8 x 1.25	29
25]	22	19.5	17	41.5	18.5	10	18	40	6	33	M5 x 0.8	5.5	8	6	25	65	3	44	60	3.5	M10 x 1.25	29
32]	22	19.5	17	44	20	12	18	40	6	38	M5 x 0.8	5.5	10	7.2	25	65	3	44	60	3.5	M10 x 1.25	35.5
40	Up to	30	27	19	53.5	26	16	19	50	8	47	M6 x 1.0	6	14	7.2	30	72	3	54	75	4	M14 x 1.5	44
50	1500	35	32	27	69	32	20	21	58	11	58	M8 x 1.25	7	18	10	40	81	4	66	90	5.5	M18 x 1.5	55
63]	35	32	27	81	38	20	21	58	11	72	M10 x 1.5	7	18	12	45	81	4	82	110	7	M18 x 1.5	69
80]	40	37	32	99.5	50	25	28	71	13	89	M10 x 1.5	10	22	12	55	90	4	100	130	7	M22 x 1.5	80
100	1	40	37	41	125	60	30	29	71	16	110	M12 x 1.75	10	26	14	70	92	6	120	160	8	M26 x 1.5	100

^{*} Foot brackets and plug bolts are installed when shipped from factory.

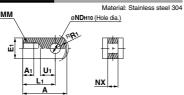
Note 1) Ø20 and Ø25 cylinders with an air cushion: M5 x 0.8

						(mm)
Bore size	F	•	s	х	Υ	ZZ
(mm)	Rc, NPT	G				
20	1/8 (1)	M5 x 0.8	89	15	7	159
25	1/8 (1)	M5 x 0.8	89	15	7	169
32	1/8	1/8	91	16	6	171
40	1/8	1/8	99	16.5	6.5	199
50	1/4	1/4	116	21.5	11.5	232
63	1/4	1/4	116	21.5	11.5	232
80	3/8	3/8	138	28	17	280
100	1/2	1/2	140	30	15	282

Rod side flange type (F): $C \square G5WF_A^N \square S_V^R$

Bore size	Stroke range (mm)		AL	B1	В	С	D	FX	FD	FT	GA	н	H1	ı	J	к	KA	м	ММ	NA	Р		s	zz
(mm)	Standard																				Rc, NPT	G		
20		18	15.5	13	50	16.5	8	36	5.5	6	18	35	5	31	M4 x 0.7	5	6	3	M8 x 1.25	29	1/8 (1)	M5 x 0.8	89	159
25] [22	19.5	17	50	18.5	10	36	5.5	6	18	40	6	33	M5 x 0.8	5.5	8	3.5	M10 x 1.25	29	1/8 (1)	M5 x 0.8	89	169
32] [22	19.5	17	50	20	12	38	6.6	6	18	40	6	38	M5 x 0.8	5.5	10	3.5	M10 x 1.25	35.5	1/8	1/8	91	171
40	Up to	30	27	19	60	26	16	46	6.6	6	19	50	8	47	M6 x 1.0	6	14	4	M14 x 1.5	44	1/8	1/8	99	199
50	1500	35	32	27	75	32	20	58	9	9	21	58	11	58	M8 x 1.25	7	18	5.5	M18 x 1.5	55	1/4	1/4	116	232
63	1 1	35	32	27	90	38	20	70	11	9	21	58	11	72	M10 x 1.5	7	18	7	M18 x 1.5	69	1/4	1/4	116	232
80	1 1	40	37	32	100	50	25	82	11	9	28	71	13	89	M10 x 1.5	10	22	7	M22 x 1.5	80	3/8	3/8	138	280
100	11	40	37	41	125	60	30	100	14	10	29	71	16	110	M12 x 1.75	10	26	8	M26 x 1.5	100	1/2	1/2	140	282

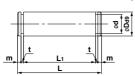
^{*} Flange bracket and plug bolt are installed when shipped from factory.


Note 1) ø20 and ø25 cylinders with an air cushion: M5 x 0.8

Note 2) Refer to the basic type (B)/CG5WBA□S* for the dimensions of air cushion needles.

Note 2) Refer to the basic type (B)/CG5WBA\subseteq S* for the dimensions of air cushion needles

CG5-S Series Accessory Dimensions

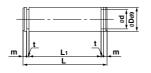

Single Knuckle Joint

Part no.	Applicable bore size (mm)	Α	A 1	E1	L1	ММ	NDH10	NX	R1	U1
I-G02SUS	20	34	8.5	□16	25	M8 x 1.25	8 ^{+ 0.058}		10.3	11.5
I-G03SUS	25, 32	41	10.5	□20	30	M10 x 1.25	10 ⁺ 0.058	10 -0.2	12.8	14
I-G04SUS	40	42	14	□22	30		10 ⁺ 0.058		12	14
I-G05SUS	50, 63	56	18	□28	40		14+0.070		16	20
I-G08SUS	80	71	21	□38	50		18 ^{+ 0.070}		21	27
I-G10SUS	100	79	21	□45	55	M26 x 1.5	22+0.084	32 -0.3	24	31

Knuckle Joint Pin

Material: Stainless steel 440 (Pin) Stainless steel 304 (Retaining ring)

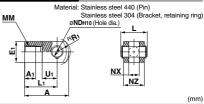
(mm)


(mm)

Part no.	Applicable bore size (mm)	Dd9	d	L	L1	m	t	Applicable retaining ring
IY-G02SUS	20	8 -0.040 -0.076	7.6	21	16.2	1.5	0.9	Type C 8 for axis
IY-G03SUS	25, 32	10 -0.040 -0.076	9.6	25.6	20.2	1.55	1.15	Type C 10 for axis
IY-G04SUS	40	10 -0.040	9.6	41.6	36.2	1.55	1.15	Type C 10 for axis
IY-G05SUS	50, 63	14 -0.050	13.4	50.6	44.2	2.05	1.15	Type C 14 for axis
IY-G08SUS	SUS 80 18 1		17	64	56.2	2.55	1.35	Type C 18 for axis
IY-G10SUS	100	22 ^{-0.065} -0.117	21	72	64.2	2.55	1.35	Type C 22 for axis

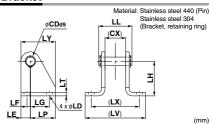
^{*} Retaining rings are included.

Clevis Pin


Material: Stainless steel 440 (Pin) Stainless steel 304 (Retaining ring)

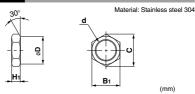
Part no.	Applicable bore size (mm)	Dd9	d	L	L1	m	t	Applicable retaining ring
CD-E02SUS	20, 25	Ø8 -0.040 -0.076	7.6	27.6	22.8	1.5	0.9	Type C 8 for axis
CD-E03SUS	32, 40	Ø10 -0.040 -0.076	9.6	38.4	33	1.55	1.15	Type C 10 for axis
CD-E05SUS		Ø14 -0.050 -0.093	13.4	59.6	53.2	2.05	1.15	Type C 14 for axis
CD-E08SUS	80,100	Ø22 -0.065 -0.117	21	87.2	79.4	2.55	1.35	Type C 22 for axis

^{*} Retaining rings are included.


Double Knuckle Joint

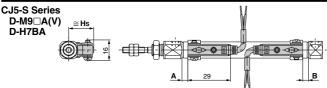
		-			_,	4							(mm)
	Applicable bore size (mm)		A 1	E1	L	L1		ND _{H10}		ΝZ	R1	U1	Applicable pin no.
Y-G02SUS	20	34	8.5	16	21	25		8+0.058		16	10.3	11.5	IY-G02SUS
Y-G03SUS	25, 32	41	10.5	20	25.6	30	M10 x 1.25					14	IY-G03SUS
Y-G04SUS	40	42	16	22	41.6	30	M14 x 1.5	10+0.058				14	IY-G04SUS
Y-G05SUS	50, 63	56	20	25	50.6	40	M18 x 1.5	14 + 0.070	22 ^{+0.5} _{+0.3}	44	16	20	IY-G05SUS
Y-G08SUS	80	71	23	35	64	50	M22 x 1.5	18 ^{+0.070}				27	IY-G08SUS
Y-G10SUS	100	79	24	40	72	55	M26 x 1.5	22 ^{+0.084}	32 ^{+ 0.5} + 0.3	64	24	31	IY-G10SUS
. IZ-malda ist	-4 -1						and in all rate	_					

^{*} Knuckle joint pins and retaining rings are included.


Pivot Bracket

Applicable bore size (mm)	CD (Axis)	сх	LD	LE	LF	LG	LH	LL	LP	LT	LV	LX	LY
20, 25	8 -0.040 -0.076	16	7	9	2	14	30	27.6	21	3	56.5	42	30
32, 40	10 -0.040	24	7	11	4	22	40	38.4	29	4	70.5	56	40
			12	15	5	25	50	59.6	35	6	106.5	84	50
80, 100	22 -0.065	60	14	23	6	40	80	87.2	57	9	144.5	120	80
	bore size (mm) 20, 25 32, 40 50, 63	bore size (Mxis) 20, 25 8 -0.040 32, 40 10 -0.076	bore size (Axis) CX 20, 25 8-000 16 32, 40 10-000 24 50, 63 14-003 40	bore size (Axis) CX LD 20, 25 8 -000 16 7 32, 40 10 -000 24 7 50, 63 14 -000 40 12	bore size (AXis) CX LD LE (mm) 20, 25 8 -000 16 7 9 32, 40 10 -000 24 7 11 50, 63 14 -000 40 12 15	bore size (Axis) CX LD LE LF 20, 25 8-000 16 7 9 2 32, 40 10-000 24 7 11 4 50, 63 14-000 40 12 15 5	bore size (AXIs) CX LD LE LF LG (mm) 16 7 9 2 14 32, 40 10 1000 24 7 11 4 22 50, 63 14 0000 40 12 15 5 25	bors size (AXIS) CX LD LE LF LG LH (AXIS) CX (D) LE UF LG LH (AXIS) CX (D) LE UF LG LH (AXIS) CX (D)	bors size (AXis) CX LD LE LF LG LH LL (MXis) CX 20,255 8 -0.00 16 7 9 9 2 14 30 27.6 32,40 10 -0.00 24 77 11 4 22 40 38.4 50.63 14 -0.00 40 12 15 5 25 50 59.6	böre size (mm) 6,400 20, 25 6,400 6,000 6,000 7 16 7 9 2 14 30 27.6 21 32, 40 10,400 14,400	böre size (mm) CX kuls) CX kuls LE kuls LF kuls LH kuls LP kuls LT kuls	böre size (mm) Kolksis (Ms) CX LD LE LF LG LH LP LT LV L	bore size (mm) CX (Ais) CX (D) LE LG LH LD LT LV LX L

^{*} Clevis pins and retaining rings are included.


Rod End Nut

Part no.	Applicable bore size (mm)	B1	С	D	d	H1
NT-02SUS	20	13	(15)	12.5	M8 x 1.25	5
NT-03SUS	25, 32	17	(19.6)	16.5	M10 x 1.25	6
NT-G04SUS	40	19	(21.9)	18	M14 x 1.5	8
NT-05SUS	50, 63	27	(31.2)	26	M18 x 1.5	11
NT-08SUS	80	32	(37.0)	31	M22 x 1.5	13
NT-10SUS	100	41	(47.3)	39	M26 x 1.5	16

CJ5-S/CG5-S Series **Auto Switch Mounting**

Proper Auto Switch Mounting Position (Detection at stroke end) and Mounting Height

Minimum Stroke for Auto Switch Mounting

Donie time				
Basic type, Foot type, Flange type, Clevis type				
1 (Rod cover side)	2 (Different sides)	2 (Same side)		
Port side	Port side	Port side		
10	15	60		
	(Rod cover side) Port side	1 (Rod cover side) (Different sides) Port side Port side		

Auto Switch Mounting Bracket / Part No.

Auto switch model	Bore size (mm)				
Auto switch model	ø 10	ø 16			
D-M9□A D-M9□AV	BJ6-010S Note 1)	BJ6-016S Note 1)			
D-H7BA	BJ2-010S	BJ2-016S			

^{*} With stainless steel mounting screws.

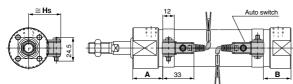
Note 1) Set part number which includes the auto switch mounting band (BJ2-DDS) and the holder kit (BJ4-1/Switch bracket: White).

Note 2) For D-M9□A(V), avoid the indicator LED for mounting the switch bracket.

Operating Range Auto switch mode

D-H7BA

je		(mm)			
	Bore size (mm)				
1	10	16			


* Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately ±30% dispersion) There may be the case to change substantially depending on an ambient environ-

Proper Auto Switch Mounting Position and Its Mounting Height

Applicable Auto switch)-H7B <i>A</i>	1		
Applicable model bore size (mm)	Α	В	Hs		
10	0	0	17		
16	0.5	0.5	20.5		

Note) Adjust the auto switch after confirming the operating condition in the actual setting

CG5-S Series D-G5BA

Minimum Stroke for Auto Switch Mounting

Mounting bracket	Basic type	Basic type, Foot type, Flange type, Clevis type						
Number of auto switches	1 (Rod cover side)	2 (Different sides)	2 (Same side)					
Switch mounting side Switch type	Port side	Port side	Port side					
Minimum stroke (mm)	10	20	75					

SMC

Auto Switch Mounting Bracket / Part No.

Auto switch	Bore size (mm)							
model	20	25	32	40	50	63	80	100
D-G5BA	NBA- 088S	NBA- 106S	BGS1 -032S		BAF -05S	BAF -06S	BAF -08S	BAF -10S

* With stainless steel mounting screws.

1136

1	1)	1	1	1	1	1)

- 1		•						·····	
Auto switch model		Bore size (mm)							
	20	25	32	40	50	63	80	100	
D-G5BA	5	5	5.5	6	7	7.5	7.5	8	

* Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately ±30% dispersion) There may be the case to change substantially depending on an ambient environment.

Proper Auto Switch Mounting Position and Its Mounting Height

Applicable Auto switch			
Applicable model bore size (mm)	Α	В	Hs
20	31.5	26	26
25	31.5	28.5	28.5
32	32.5	33	33
40	37	36.5	36.5
50	45.5	42	42
63	45.5	48.5	48.5
80	56	57.5	57.5
100	57	68	68

Note) Adjust the auto switch after confirming the operating condition in the actual setting.

Technical Data:

Chemical Resistance Table

Chemical Resistance Table

- ○: No influence or almost no influence
 ○: Some influence, but operational depending on conditions
 △: Avoid use if possible
 x: Substantial influence, not suitable for use

- : Not tested

		Parts	Во	dy	Se	eal
		Material	Stainless steel	Aluminum*	Nitrile rubber	Fluororubber
Chemical (Concenti	ration	Symbol weight %, Temperature °C)	Stainless steel 304	Al	NBR (-10 to 60°C)	FKM (-40 to 150°C)
	1	Hydrochloric acid (20%, Room temperature)	×	×	0	0
Concentration (Concentration (Concen	2	Chromic acid (25%, 70°C)	0	×	×	0
	3	Boric acid	0	×	0	0
	4	Sulfuric acid (30%, Room temperature)	×	×	0	0
	5	Phosphoric acid (50%, Room temperature)	0	×	0	0
	6	Ammonium hydroxide (28%)	0	0	0	×
	7	Sodium hydroxide (30%, Room temperature)	0	×	0	Δ
Inorganic salt Inorganic salt Inorganic salt Inorganic solvent 1 Organic solvent 1 Others (oil, gas, etc.) 2	8	Calcium hydroxide	Δ	×	0	0
	9	Magnesium hydroxide	0	0	0	0
	10	Acetylene	0	0	0	0
Organic solvent	11	Formic acid (25%, Room temperature)	0	Δ	×	Δ
	12	Citric acid	Δ	×	0	0
	13	Acetic acid (10%, Room temperature)	0	Δ	Δ	0
Inorganic salt Inorganic alkali Organic solvent Others (oil, gas, etc.)	14	Lactic acid (5%, 20°C)	0	×	0	0
	15	Linseed oil	0	0	0	0
	16	Polassium chloride	0	Δ	0	0
	17	Calcium chloride	0	0	0	0
Others	18	Mineral oil	0	0	0	0
Organic solvent Others (oil, gas, etc.)	19	Sodium hypochlorite (2%, Room temperature)	0	×	×	0
etc.)	20	Sodium chloride	0	_	0	0
alkali Organic solvent Others (oil, gas, etc.)	21	Carbon dioxide	0	0	0	0
	22	Natural gas	0	0	0	0
	23	Boric acid	0	×	0	0

^{*} Unless noted otherwise, the solution concentration is in a saturated state.

^{*} Chemical resistance is a guide that applies only to the stainless steel cylinder parts, and does not guarantee the performance of air cylinders (auto switches). Be sure to perform a verification test before operating.

^{*)} Reference data

CJ5-S/CG5-S Series Stainless Steel Cylinder Specific Product Precautions 1

Be sure to read this before handling the products.

Refer to page 20 for safety instructions and pages 21 to 30 for actuator and auto switch precautions.

Caution on Design

⚠ Warning

1. Note the weight of the stainless steel products.

Since the weight of stainless steel cylinders is approximately 1.5 to 3 times heavier than the standard products (with aluminum body), be careful when calculating weight estimates. Also, when mounting the cylinder on equipment where vibration is expected, avoid using single side brackets such as the flange type, and use double side brackets such as the foot type instead.

- Adjust the speed control for the environment in which it will be used.
- Speed adjustment may be changed depending on the environment.

 2. Dust may accumulate on this product's mounting screws and brackets in some operating conditions.

Measures must be applied depending on the operating conditions when mounting.

Selection

\land Warning

 Generally, use nitrile rubber (NBR) seals with liquids that do not contain chlorine and sulfur, and use fluoro rubber (FKM) seals with liquids that contain chlorine and sulfur.

However, depending on the type and the brand of liquid (such as cleaning solvent) that splashes on the cylinder, the operating life of seals may be reduced dramatically. In cases where special additives are used, or where liquid caused trouble with the current nitrile or fluoro rubber seals in the past, request an investigation or set up a test period for the use of the seals.

Even the fluoro rubber specification may not be applicable depending on the type of chemicals and the operating temperature. Therefore, be sure to verify the seal's applicability before use.

Mounting

⚠ Warning

1. Do not rotate the cover.

If a cover is rotated when installing a cylinder or screwing a fitting into the port, it is likely to damage the junction part with cover.

2. When using pins, apply grease, etc., in order to prevent them from degrading of shape and rusting.

Operating Precautions

⚠ Warning

 For details about operating precautions, refer to page 183 for the CJ2 series (CJ5-S) and page 448 for the CG1 series (CG5-S).

⚠ Caution

- If cleaning the rotating part, grease may leak out, which shortens product service life. Thus, cleaning must be as infrequent as possible.
- If excess water gets into mounting holes, unwanted bacteria may reproduce. Plug them with plug bolts or external covers to avoid this.

Operating Environment

⚠ Warning

1. Fully consider the compatibility of stainless steel.

The corrosion resistance of stainless steel is not effective against all media and corrosive environments. Corrosion proceeds rapidly with strong hydrochloric acid, hydrofluoric acid, and high temperature ammonium gas, etc. Therefore its compatibility to the environment must be considered carefully.

2. Do not operate cylinders with auto switches in environments where oil and chemicals are used.

Please contact SMC when operating in environments with coolants, cleaning solvents, various oils or chemicals, as it may cause adverse effects (faulty insulation, malfunction due to swelling of the potting resin, and hardening of lead wires, etc) to auto switches even in a short period of time. Even with the fluoro rubber seal specification, the auto switch related parts (switch body, mounting bracket, and built-in magnet) are identical to the standard specifications. Therefore, consult with SMC regarding the cylinder's compatibility (such as chemical resistance) with an environment (chemicals, etc.) before operating.

3. Do not immerse the cylinder in water or chemicals.

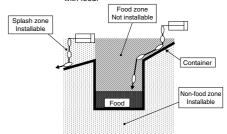
When the cylinder is operated in a condition with water pressure, the fluid leaks into the cylinder in the early stages. In the worst case, the fluid may back flow inside the piping and damage the solenoid valve.

⚠ Caution

1. Avoid installing and using a cylinder inside a food zone.

<Not installable>

Food zoneAn environment where food which will be sold as merchandize, directly touches the


cylinder's components.

<Installable>

Splash zone ······· An environment where food which will not be sold as merchandize, directly touches the

cylinder's components.

Non-food zone ···· An environment where there is no contact with food.

- When cleaning solvent or chemicals splashes on a cylinder, the service life may be extremely shortened. Please contact SMC for details.
- When cleaning cylinders with steam, do it as quickly as possible, keeping the cylinder's temperature range in mind.
- When cleaning cylinders with a brush, etc., do not apply excessive force to the weaker parts, such as auto switch lead wire, etc.

CJ5-S/CG5-S Series Stainless Steel Cylinder **Specific Product Precautions 2**

Be sure to read this before handling the products.

Refer to page 20 for safety instructions and pages 21 to 30 for actuator and auto switch precautions.

Maintenance

⚠ Warning

1. If this cylinder is lubricated, it may cause malfunctions.

If grease other than designated is used, it may also cause malfunctions

. Order with the following part number when only the grease for maintenance is needed.

Grease pack part number for stainless steel cylinders

Grease for food processing machines: GR-R-010 (10 g)

2. Do not wipe grease attached to the rotating part of the air cylinder.

If grease attached to the rotating part is forcibly wiped off, it may cause malfunctions

If the cylinder is operated for a long period of time, the rotating part may become black. In such cases, wipe the grease attached to the rotating part and reapply fresh grease to enable the cylinder to operate for a long period of time.

(Wipe the grease with water. Using alcohol or solvents may damage seals.)

Precautions for the CG5-S series

⚠ Warning

1. Only people who have sufficient knowledge and experience are allowed to replace seals.

The person who disassembles and reassembles the cylinder is responsible for the safety of the product. Repeatedly disassembling and reassembling the product may cause wearing or deformation of the screws as well as a decline in screw tightening strength. When reassembling the product, be sure to check the cover and tubing screws for wear, deformities, or any other abnormalities. Operating the product with damaged screws may result in the cover or tubing coming off during operation, which could lead to a serious accident. Caution must be taken to avoid such incidents.

∕!\ Caution

- 1. Sealant* is used on the threads of the connecting sections of the cover and the cylinder tube for airtight construction. When disassembling the cylinder, the old sealant must be completely removed, and new sealant must be applied before re-assembling.
 - * Loctite® 542 (medium strength) or equivalent
- 2. Ø50 or larger bore size cylinders cannot be dis-assembled.

When disassembling cylinders with bore sizes of ø20 through ø40, grip the double flat part of either the head cover or the rod cover with a vise and loosen the other side with a wrench or a monkey wrench, etc., and then remove the cover. When re-tightening, tighten approximately 2 degrees more than the original position. (Cylinders with ø50 or larger bore sizes are tightened with a large tightening torque and cannot be disassembled. Please contact SMC when disassembly is required.)

3. When replacing seals, take care not to hurt your hand or finger on the corners of parts.

