
Mechanically Jointed Rodless Cylinder

Series MY2

ø16, ø25, ø40

Compact and low profile design D-

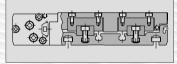
MY1B

MY1M

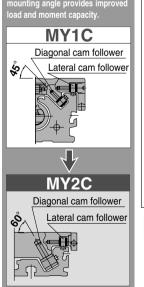
-X□

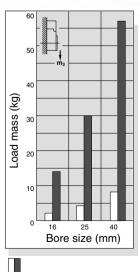
Mechanically Jointed Rodless Cylinder Series WY2

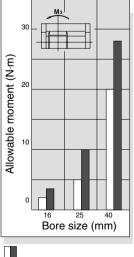

Compact and low profile design

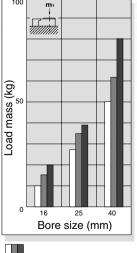

A complete reduction in height of the cylinder allows mounting in a narrow space. The low profile design of the cylinder built with a high precision single or double axis guide, provides same load capacity as the earlier Series MY1.

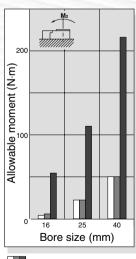
Three types of guide options to suit a variety of applications.

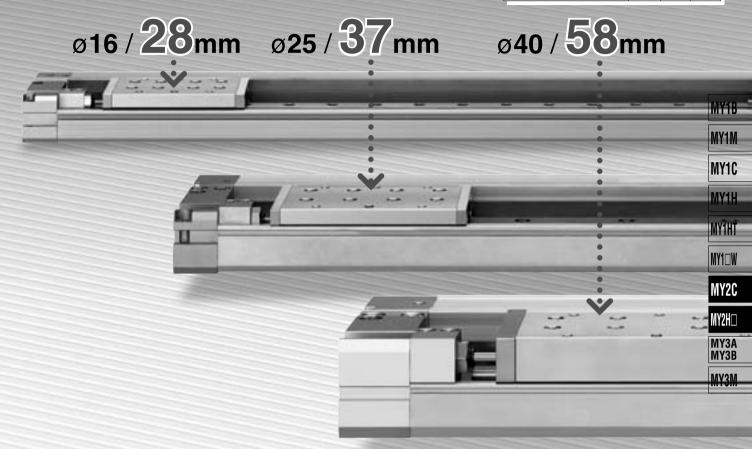

All 3 types have the same cylinder height and actuator (cylinder).


Increased load capacity


The dynamic load mass has been increased with improved guide performance. (Compared to previous Series MY1.)

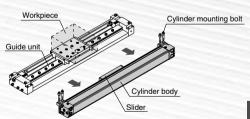

Cam Follower Guide


Linear Guide

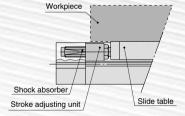


Height reduction by 30% (Compared to previous Series MY1.)

Low profile achieved by placing the guide unit and cylinder body next to one another. (dimension reduced by 12 mm to 26 mm)


			(111111)
Series	ø16	ø25	ø40
MY2C			
MY2H (Single axis)	28	37	58
MY2HT (Double axis)			
MY1C, MY1H	40	54	84

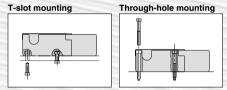
Easy replacement of cylinder body


The cylinder can be replaced without removing the workpiece

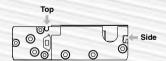
The cylinder can be detached by simply removing the four mounting bolts, and pulling it off in the direction of the arrows.

Improved mounting flexibility

The low profile design allows mounting of heavy-loaded shock absorber (H unit) without interfering with the workpiece.



Option


Optional side support is available (Series MY2C)

A side support prevents guide deflection for the long stroke application.

Two mounting styles

Auto switch mounting on two sides

Standard with air cushion and centralized piping

Series Variations

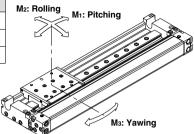
Selles Valla	ILIOII	3																					
Model	Bore size)								St	tanda	rd str	oke (r	nm)								Max. available	Made to order
Model	(mm)	50	100	150	200	250	300	350	400	450	500	550	600	700	800	900	1000	1200	140	0 160	0 1800 2000	stroke (mm)	iviade to order
MY2C Cam follower guide	16	ł	7	1	+	ł	7	7	7	1	7	1	7	1	4	7	1	7	7	7	——	5000 (3000 for ø16)	Intermediate strokes (Standardized with MY2C)
MY2H Linear guide/ Single axis	25	ł	╬	╬	\downarrow	ł	╬	╬	╬	+	+	+	+	+	+	+	+	+	+	-	+	1500 (1000	Long strokes Helical insert threads
MY2HT Linear guide/	40	H	╬	╬	+	+	╬	4	4	4	4	4	+	4	+	+	4	4	4	4	+	for ø16)	Holder mounting brackets

D-□

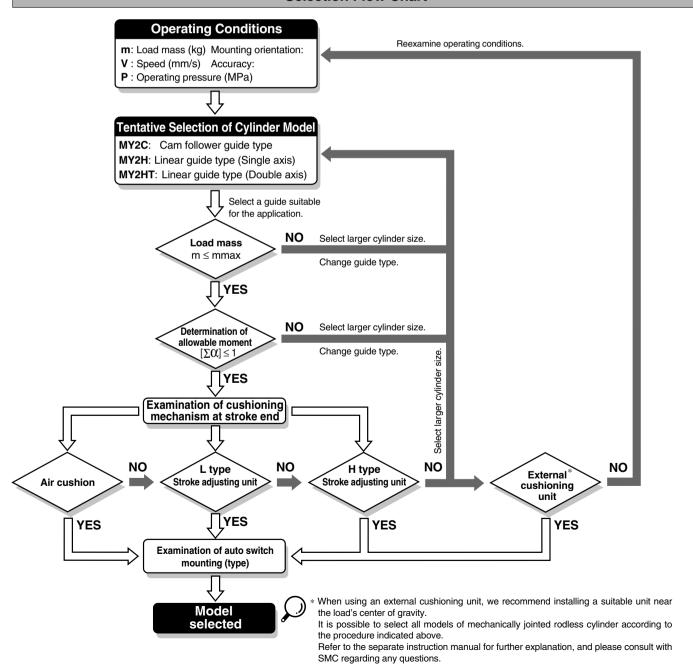
Individual
-X
Technical

Series MY2

Model Selection 1

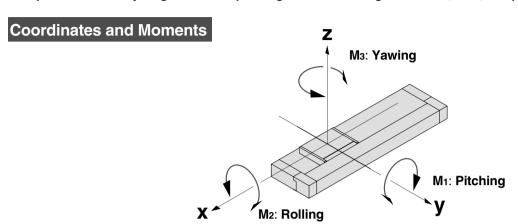

The following are the steps for selection of the series MY2 best suited to your application.

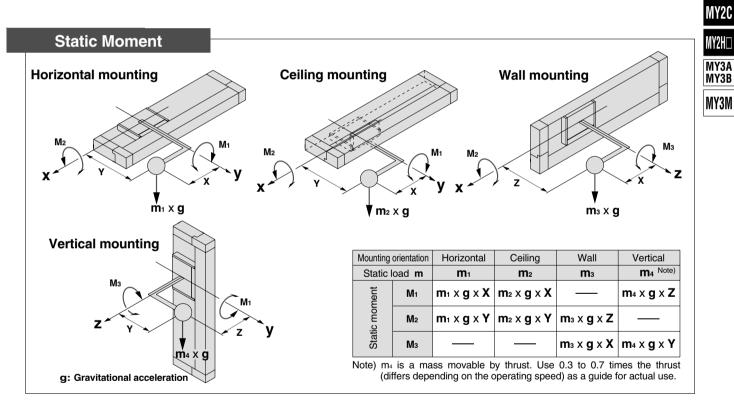
Standards for Tentative Model Selection

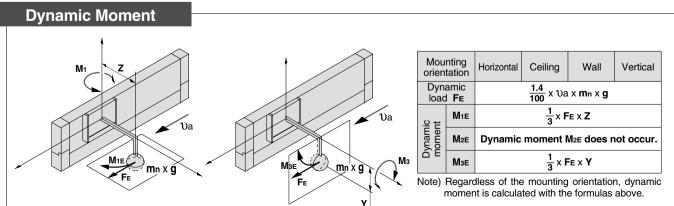

Cylinder model	Guide type	Standards for guide selection	Graphs for related allowable values
MY2C	Cam follower guide	Slide table accuracy approx. ±0.05 mm Note 2)	Refer to page 1091.
MY2H	Linear guide type (Single axis)	Slide table accuracy ±0.05 mm or less Note 2)	Refer to page 1092.
MY2HT	Linear guide type (Double axis)	Slide table accuracy ±0.05 mm or less Note 2)	Refer to page 1093.

Note 1) Please use the precision of each guide as a guideline for selection. Please contact SMC if warranty on precision is required.

Note 2) Accuracy indicates displacement of the table (at stroke end) when 50% of the allowable moment shown in the catalog is applied. (Reference value)




Selection Flow Chart



Types of Moment Applied on Rodless Cylinders

Multiple moments may be generated depending on the mounting orientation, load, and position of the center of gravity.

MY1B

MY1M

MY1C

MY1H

MY1HT

MY10W

Individual -X□

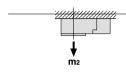
Technical

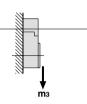
1089

g: Gravitational acceleration, Va: Average speed

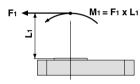
Maximum Allowable Moment/Maximum Load Mass

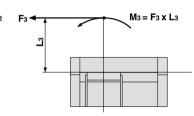
Model	Bore size	Maximum a	allowable mo	ment (N·m)	Maximum load mass (kg)			
Model	(mm)	M1 M2 N		Мз	m ₁	m ₂	m ₃	
	16	5	4	3.5	18	16	14	
MY2C	25	13	14	10	35	35	30	
	40	45	33	28	68	66	57	
	16	7	6	7	15	13	13	
MY2H	25	28	26	26	32	30	30	
	40	60	50	60	62	62	62	
	16	46	55	46	20	18	18	
MY2HT	25	100	120	100	38	35	35	
	40	200	220	200	80	80	80	


The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum load mass for a particular piston speed.


Maximum Allowable Moment

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum load mass value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.


Load mass (kg)



Moment (N·m)

<Calculation of guide load factor>

- 1. Maximum load mass (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
- * To evaluate, use Va (average speed) for (1) and (2), and Va (impact speed Va = 1.4Va) for (3). Calculate m max for (1) from the maximum load mass graph (m1, m2, m3) and Mmax for (2) and (3) from the maximum allowable moment graph (M1, M2, M3).

- Note 1) Moment caused by the load, etc., with cylinder in resting condition.
- Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).
- Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma \alpha$) is the total of all such moments.

2. Reference formulas [Dynamic moment at impact]

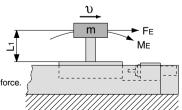
Use the following formulas to calculate dynamic moment when taking stopper impact into consideration.

m : Load mass (kg)

U: Impact speed (mm/s)

F: Load (N)

L1: Distance to the load's center of gravity (m)


FE: Load equivalent to impact (at impact with stopper) (N) ME: Dynamic moment (N·m)

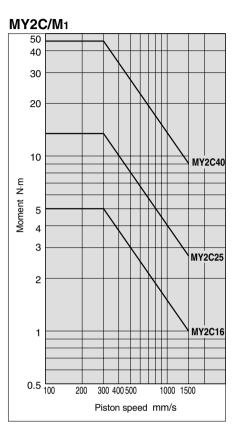
g : Gravitational acceleration (9.8 m/s2)

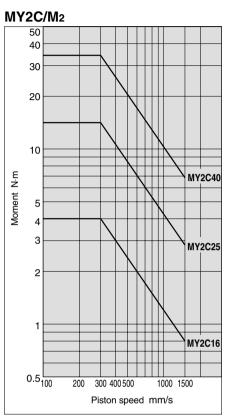
Va: Average speed (mm/s) M: Static moment (N·m)

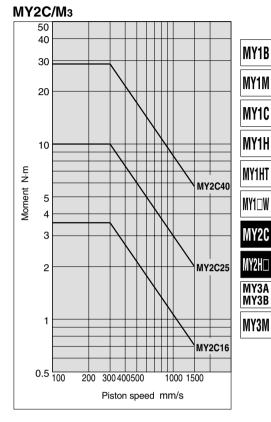
V = 1.4Va (mm/s) FE = $\frac{1.4}{100} Va \cdot g \cdot m^{\text{Note 4}}$

 $\therefore ME = \frac{1}{3} \cdot FE \cdot L1 = 0.05 \text{ Va m L1} \text{ (N·m) Note 5)}$

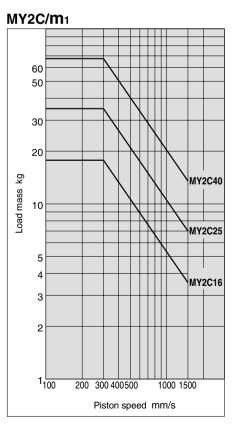
Note 4) $\frac{1.4}{100}$ Va is a dimensionless coefficient for calculating impact force.

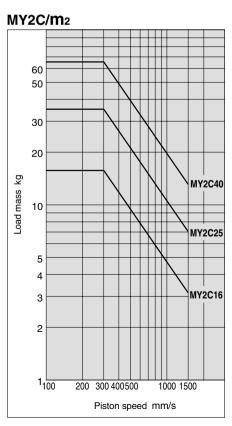

Note 5) Average load coefficient (= $\frac{1}{3}$):
This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.

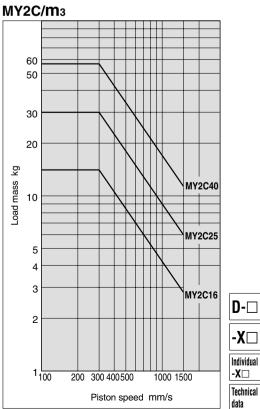

3. Refer to pages 1096 and 1097 for detailed selection procedures.


Maximum Load Mass

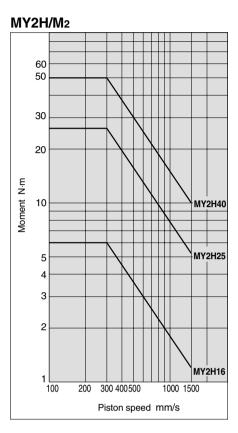
Select the load mass from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.

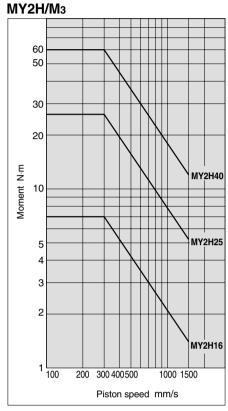

Moment/MY2C



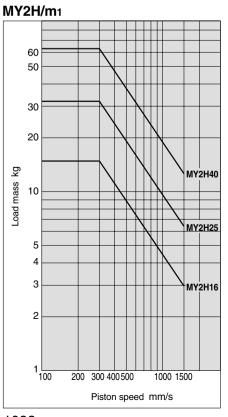


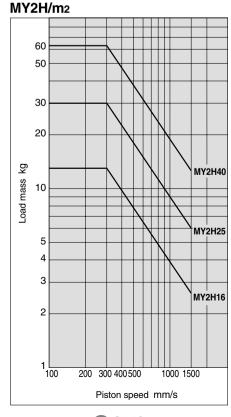
Load Mass/MY2C

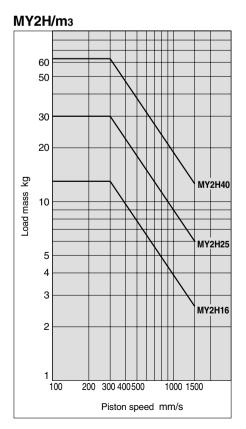

-X□


Series MY2

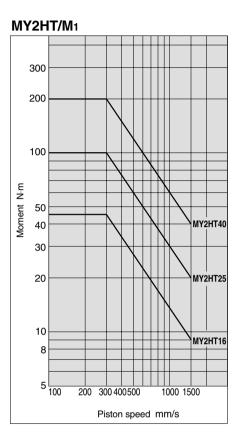
Maximum Allowable Moment/Maximum Load Mass

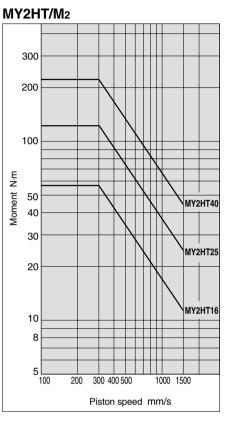

Moment/MY2H (Single axis)

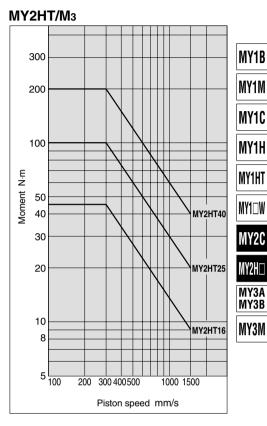

MY2H/M1 60 50 30 20 w/Y 2H40 10 MY2H40 10 MY2H25 4 3 2 MY2H16 100 Piston speed mm/s

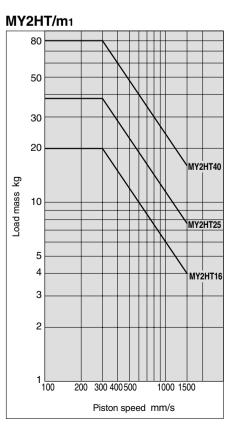


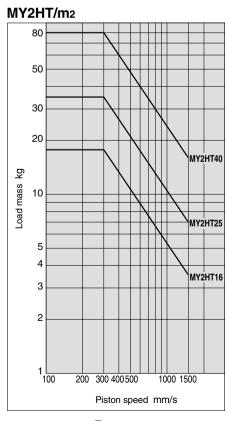
Load Mass/MY2H (Single axis)

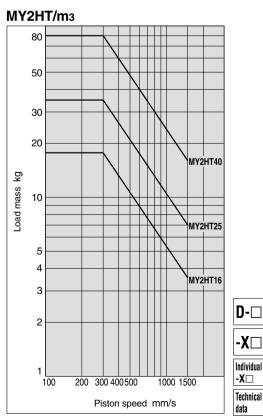







Moment/MY2HT (Double axis)





Load Mass/MY2HT (Double axis)

Cushion Capacity

Cushion Selection

<Air cushion>

Air cushions are a standard feature on mechanically jointed rodless cylinders.

The air cushion mechanism is installed to avoid excessive impact of the piston at the stroke end during high speed operation. The air cushion does not act to decelerate the piston near the stroke end.

The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

<Stroke adjusting unit with shock absorber>

Use this unit when operating with a load or speed exceeding the air cushion limit line, or when cushioning is necessary because the cylinder stroke is outside of the effective air cushion stroke range due to stroke adjustment.

L unit

Use this unit when cushioning is necessary outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line and below the L unit limit line.

H unit

Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

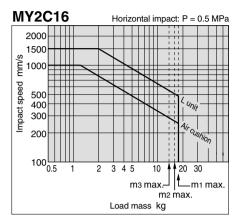
Caution

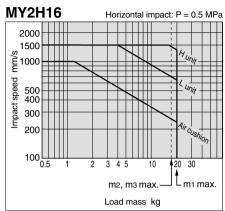
Do not use a shock absorber and air cushion together.

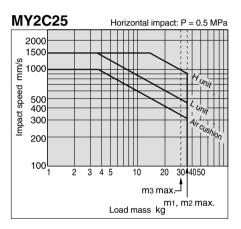
Air Cushion Stroke							
Bore size (mm)	Cushion stroke						
16	12						
25	15						
40	24						

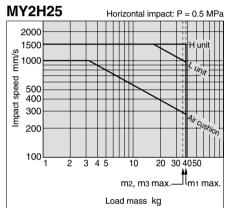
Stroke Adjusting Unit Holding Bolt Tightening Torque

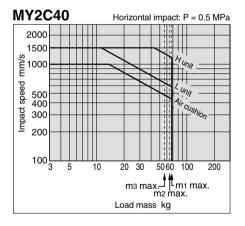
	- ,
Bore size (mm)	Tightening torque
16	0.7
25	1.8
40	5.8

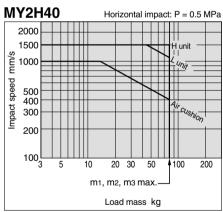

Calculation of Absorbed Energy for Stroke Adjusting Unit with Shock Abo

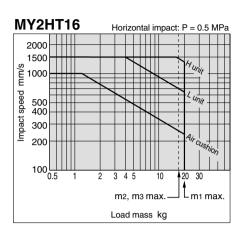

Adjusting	Unit with Sh	OCK ADSOR	oer _(N·m)
	Horizontal	Vertical (downward)	Vertical (upward)
Type of impact	<u>s</u>	V m	s = -c
Kinetic energy E 1		$\frac{1}{2} \; \textbf{m} \cdot \mathcal{V}^2$	
Thrust energy E 2	F⋅s	F⋅s + m⋅g⋅s	F⋅s – m⋅g⋅s
Absorbed energy E		E1 + E2	

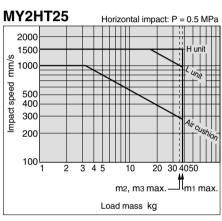

- U: Speed of impacting object (m/s) m: Mass of impacting object (kg)
- F: Cylinder thrust (N) g: Gravitational acceleration (9.8 m/s²)
- s: Shock absorber stroke (m)

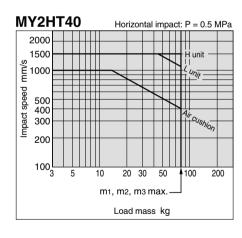

Note) The speed of the impacting object is measured at the time of impact with the shock absorber.


Absorption Capacity of Air Cushion and Stroke Adjusting Units





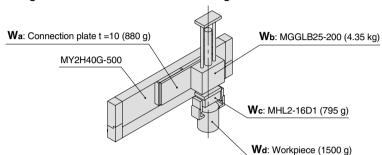


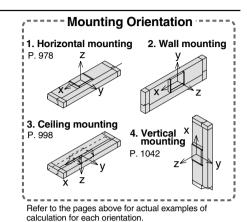


MY1B
MY1M
MY1C
MY1H
MY1HT

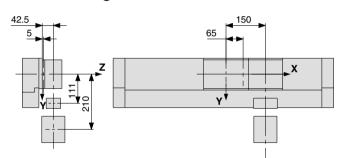
MY2C MY2H□

MY3A MY3B


Series MY2


Model Selection 2

The following are the steps for selection of the series MY2 best suited to your application.


Calculation of Guide Load Factor

1 Operating Conditions -

2 Load Blocking

Workpiece Mass and Center of Gravity

Workpiece	Mass	Center of gravity								
no. W n	m _n	X-axis Xn	Y-axis Y n	Z-axis Z n						
Wa	0.88 kg	65 mm	0 mm	5 mm						
Wb	4.35 kg	150 mm	0 mm	42.5 mm						
Wc	0.795 kg	150 mm	111 mm	42.5 mm						
Wd	1.5 kg	150 mm	210 mm	42.5 mm						

n = a, b, c, d

3 Composite Center of Gravity Calculation

$$m_3 = \Sigma m_n$$

= 0.88 + 4.35 + 0.795 + 1.5 = **7.525 kg**

$$\mathbf{X} = \frac{1}{m_3} \times \Sigma \ (\mathbf{m}_n \times \mathbf{x}_n)$$
$$= \frac{1}{7.525} (0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 1.5 \times 150) = \mathbf{140.1} \ \mathbf{mm}$$

$$\mathbf{Y} = \frac{1}{m_3} \times \Sigma (\mathbf{m}_n \times \mathbf{y}_n)$$

$$= \frac{1}{m_3} (0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 1.5 \times 21)$$

=
$$\frac{1}{7.525}$$
 (0.88 x 0 + 4.35 x 0 + 0.795 x 111 + 1.5 x 210) = **53.6 mm**

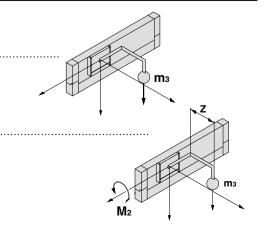
$$\mathbf{Z} = \frac{1}{\mathbf{m}_3} \times \Sigma \left(\mathbf{m}_{\mathsf{n}} \times \mathbf{z}_{\mathsf{n}} \right)$$

=
$$\frac{1}{7.525}$$
 (0.88 x 5 + 4.35 x 42.5 + 0.795 x 42.5 + 1.5 x 42.5) = **38.1 mm**

4 Calculation of Load Factor for Static Load -

m₃: Mass

m₃ **max** (from 1 of graph MY2H/**m**₃) = 62 (kg)

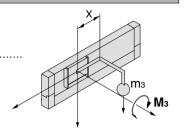

Load factor $\alpha_1 = m_3 / m_3 max = 7.525/62 = 0.12$

M2: Moment

M₂ max (from 2 of graph MY2H/M₂) = 50 (N·m)

 $M_2 = m_3 \times g \times Z = 7.525 \times 9.8 \times 38.1 \times 10^{-3} = 2.81 \text{ (N·m)}$

Load factor $\alpha_2 = M_2/M_2 \text{ max} = 2.81/50 = 0.06$


Calculation of Guide Load Factor

M₃: Moment

M₃ **max** (from 3 of graph MY2H/**M**₃) = 60 (N·m)

 $M_3 = m_3 \times g \times X = 7.525 \times 9.8 \times 140.1 \times 10^{-3} = 10.33 \text{ (N·m)}$

Load factor $CC_3 = M_3/M_3 \text{ max} = 10.33/60 = 0.17$

5 Calculation of Load Factor for Dynamic Moment

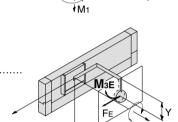
Equivalent load FE at impact

$$Fe = \frac{1.4}{100} \times \upsilon a \times g \times m = \frac{1.4}{100} \times 300 \times 9.8 \times 7.525 = 309.7 \text{ (N)}$$

M₁E: Moment

M₁E max (from 4 of graph MY2H/M₁ where 1.4 va = 420 mm/s) = 42.9 (N·m)

$$\mathbf{M}_{1}\mathbf{E} = \frac{1}{3} \times \mathbf{FE} \times \mathbf{Z} = \frac{1}{3} \times 309.7 \times 38.1 \times 10^{-3} = 3.93 \text{ (N·m)}$$


Load factor $0.4 = M_1E/M_1E max = 3.93/42.9 = 0.09$

M₃E: Moment

M₃E max (from 5 of graph MY2H/M₃ where 1.40a = 420 mm/s) = 42.9 (N·m)

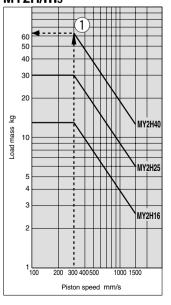
$$M_3E = \frac{1}{3} \times FE \times Y = \frac{1}{3} \times 309.7 \times 53.6 \times 10^{-3} = 5.53 \text{ (N·m)}$$

Load factor $\alpha_5 = M_3 E/M_3 E max = 5.53/42.9 = 0.13$

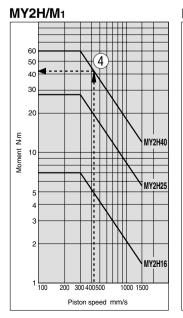
6 Sum and Examination of Guide Load Factors

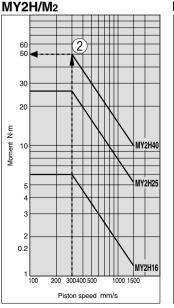
 $\Sigma \alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 0.57 \le 1$

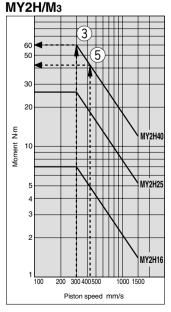
The above calculation is within the allowable value and the selected model can be used.


Select a separate shock absorber.

In an actual calculation, when the sum of guide load factors $\Sigma\alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series. Also, this calculation can be performed easily with the "SMC Pneumatics CAD System".


多SMC


Load Mass


MY2H/m₃

Allowable Moment

MY1M MY1C

MY1B

MY1H

MY1HT

MY1□W

MY2C

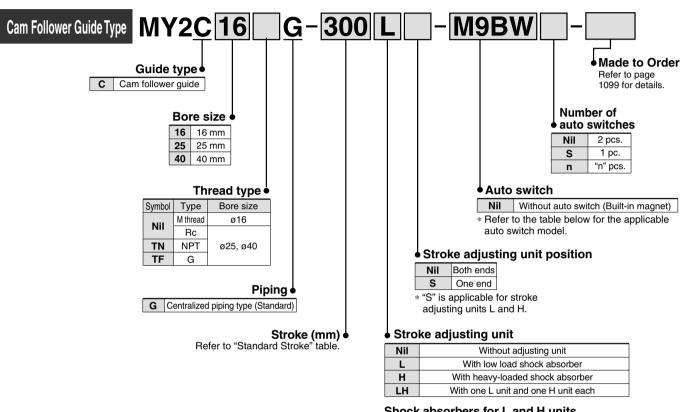
MY2H 🗆

MY3A MY3B

MY3M

D-□

-X□


Individual

Mechanically Jointed Rodless Cylinder Cam Follower Guide Type

Series MY2C

ø16, ø25, ø40

How to Order

Shock absorbers for L and H units

Bore size (mm)	16	25	40
L unit	RB0806	RB1007	RB1412
H unit	_	RB1412	RB2015

* Solid state auto switches marked "O" are produced upon receipt of order.

Applicable Auto Switch/Refer to pages 1263 to 1371 for the detailed specifications of auto switches.

Φ.					L	oad volta	ge	Auto swit	ch model	Lead wire length (m)				Due suined						
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)		OC .	AC	Perpendicular entry	In-line entry	0.5 (Nil)	1 (M)	3 (L)	5 (Z)	Pre-wired connector	Applical	ble load				
ch.				3-wire(NPN)		5V,12V		M9NV	M9N	•	•	•	0	0	IC					
switch	_			3-wire(PNP)		50,120	50,120		M9PV	M9P	•	•	•	0	0	circuit				
le s		Grommet	Yes	2-wire	24V	12V		M9BV	M9B	•	•	•	0	0	— Relay,					
state	Diagnostic	Grommet	res	3-wire(NPN)	24 V	5V,12V	5V,12V	EV/ 10V/			_	M9NWV	M9NW	•	•	•	0	0	O	PLC
Solid	indication / 2-color \			3-wire(PNP)					M9PWV	M9PW	•	•	•	0	0	circuit				
	(indication)			2-wire		12V		M9BWV	M9BW	•	•	•	0	0						
switch		Crommot	Yes	3-wire (NPN equiv.)	ı	5V	_	A96V	A96	•	_	•	_	_	IC circuit					
	_	Grommet		2-wire	24V	12V	100 V	A93V	A93	•	_	•	_	_	_	Relay,				
Reed			No	∠-wire	24V	120	100 Vor less	A90V	A90	•	_	•	_	_	_	PLC				

- * Lead wire length symbols: 0.5 m----- Nil (Example) M9NW
 - 1 m----- M (Example) M9NWM
 - 3 m----- L (Example) M9NWL 5 m----- Z (Example) M9NWZ
- * Refer to page 1114 for applicable auto switches other than listed above.
- * Refer to pages 1328 and 1329 for the details of auto switches with a pre-wired connector.
- * Auto switches are shipped together (not assembled).

Mechanically Jointed Rodless Cylinder Cam Follower Guide Type Series MY2C

JIS Symbol

Made to Order Specifications (Refer to pages 1395 to 1565 for details.)

JIS Symbol	Specification				
-XB11	Long stroke type				
-X168 Helical insert thread					
-X416 Holder mounting bracket I					
-X417	Holder mounting bracket II				

Specifications

Bore size (mm)	16	25	40					
Fluid	Air							
Action	Double acting							
Operating pressure range	0.1 to 0.8 MPa							
Proof pressure	1.2 MPa							
Ambient and fluid temperature	5 to 60°C							
Cushion	Air	cushion, Shock absor	ber					
Lubrication	N	Not required (Non-lube	e)					
Stroke length tolerance	1000 or less ^{+1.8} ₀ 1001 to 3000 ^{+2.8} ₀	0 or less $^{+1.8}_{0}$ 2700 or less $^{+1.8}_{0}$, 2701 to 5000 $^{+2.8}_{0}$						
Port size	M5 x 0.8 Rc 1/8 Rc 1/4							

Stroke Adjusting Unit Specifications

Bore size (mm)	16	2	5	40						
Unit symbol	L	L	Н	L	Н					
Shock absorber model	RB0806	RB1007	RB1412	RB1412	RB2015					
Stroke fine adjusting range (mm)	0 to −5.6	0 to -	-16							
Stroke adjusting range	When exceeding the stroke fine adjusting range: Use the Made to Order Specifications "-X416" and "-X417". (Refer to page 1554 for details.)									

 $[\]ast$ Fine stroke adjustment range is applicable for one side when mounted on a cylinder.

Shock Absorber Specifications

Mod	del	RB 0806	RB 1007	RB 1412	RB 2015				
Max. energy abs	sorption (J)	2.9	5.9	19.6	58.8				
Stroke absorption	on (mm)	6	7	12	15				
Max. impact spe	eed (mm/s)	1500	1500 1500 1500						
Max. operating freq	juency (cycle/min)	80	70	45	25				
Spring	Extended	1.96	4.22	6.86	8.34				
force (N)	Compressed	4.22	6.86	15.98	20.50				
Operating temper	rature range (°C)	5 to 60							

^{*} The shock absorber service life is different from that of the MY2C cylinder depending on operating conditions. Refer to the Specific Product Precautions for the replacement period.

Piston Speed

Bore size (mm)		16 25 40					
Without stroke adjusting unit		100 to 1000 mm/s ^{Note 1)}					
Stroke adjusting unit	L unit and H unit	-	100 to 1500 mm/s	s			

Note 1) When exceeding the air cushion stroke ranges on page 1094, the **piston speed** should be **100 to 200 mm/s**.

Standard Stroke

Bore size (mm)	Standard stroke (mm)*	Maximum manufacturable stroke (mm)			
16	100, 200, 300, 400, 500, 600, 700, 800, 900	3000			
25, 40	1000, 1200, 1400, 1600, 1800, 2000	5000			

^{*} Strokes are manufacturable in 1 mm increments, up to the maximum stroke. When exceeding a 2000 mm stroke, specify "-XB11" at the end of the model number. Refer to the Made to Order Specifications on page 1405.

MY1B

MY1M

MY1C

MY1H

MY1HT

MY10W

MY2C

MY2H□

MY3A MY3B

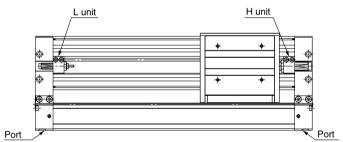
Note 2) Use at a piston speed within the absorption capacity range. Refer to page 1094.

Series MY2C

Theoretical Output

								Unit: N					
Bore	Piston	operating procedure (iiii a)											
size (mm)	area (mm²)	0.2	0.2 0.3 0.4 0.5		0.5	0.6 0.7		0.8					
16	200	40	60	80	100	120	140	160					
25	490	98	147	196	245	294	343	392					
40	1256	251	377	502	628	754	879	1005					

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)


Option

Stroke Adjusting Unit No.

Unit type	re size (mm)	16	25	40
L unit	Left	MY2H-A16L1	MY2H-A25L1	MY2C-A40L1
L unit	Right	MY2H-A16L2	MY2H-A25L2	MY2C-A40L2
H unit	Left	_	MY2H-A25H1	MY2C-A40H1
n unit	Right	_	MY2H-A25H2	MY2C-A40H2

Note) Port positions are indicated as right and left from the front.

Stroke adjusting unit Example of LH attachment

Mass

Unit: kg												
Bore size (mm)	Basic	Additional mass	Side support bracket mass	Stroke adjusting unit mass (per unit)								
	mass	per 50mm of stroke	(per set)	L unit	H unit							
16	1.05	0.13	0.01	0.03	_							
25	2.59	0.29	0.02	0.06	0.09							
40	8.78	0.67	0.04	0.17	0.23							

 Additional mass
 0.29/50 st

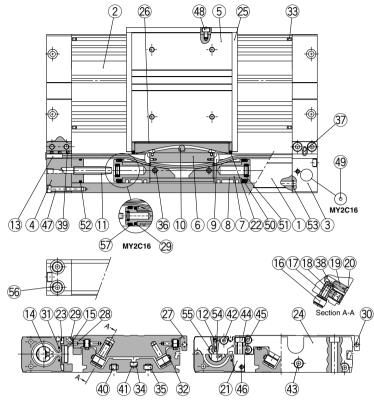
 Mass of L unit
 0.06 kg

 Cylinder stroke
 300 st

 $2.59 + 0.29 \times 300 \div 50 + 0.06 \times 2 = \text{Approx. } 4.45 \text{ kg}$

Replacement Parts

Drive Unit (Cylinder) Replacement Part No.


Model Bore size (mm)	MY2C
16	MY2BH16G- Stroke
25	MY2BH25□G- Stroke
40	MY2BH40□G- Stroke

Enter a symbol for port thread type inside \square . Note) Order auto switches separately.

Mechanically Jointed Rodless Cylinder Cam Follower Guide Type Series MY2C

Construction

MY2C

Component Parts

No.	Description	Material	Note				
1	Cylinder tube	Aluminium alloy	Hard anodized				
2	Body	Aluminium alloy	Hard anodized				
3	Head cover WR	Aluminium alloy	Hard anodized				
4	Head cover WL	Aluminium alloy	Hard anodized				
5	Slide table	Aluminium alloy	Hard anodized				
6	Piston yoke	Aluminium alloy	Hard anodized				
7	Piston	Aluminium alloy	Chromated				
8	Wear ring	Special resin					
9	Belt separator	Special resin					
10	Parallel pin	Stainless steel					
11	Cushion ring	Brass					
12	Cushion needle	Rolled steel	Nickel plated				
13	Belt clamp	Special resin					
16	Cam follower	_					
17	Eccentric gear	Stainless steel					
18	Gear fixture	Stainless steel					
19	Adjustment gear	Stainless steel					
20	Retaining ring	Stainless steel					
21	End cover	Aluminium alloy	Hard anodized				
23	Bearing	Special resin					
24	End plate	Aluminium alloy	Hard anodized				
25	Stopper	Carbon steel	Nickel plated after quenching				
26	Top cover	Stainless steel					
27	Side cover	Aluminium alloy	Hard anodized				
28	Cam follower cap	Aluminium alloy	Hard anodized				

	21)40 43		
No.	Description	Material	Note
29	Magnet	_	
30	Magnet	_	
31	Seal magnet	Rubber magnet	
32	Rail	Hard steel wire material	
33	End spacer	Special resin	
34	Square nut	Carbon steel	Nickel plated
35	Square nut	Carbon steel	Nickel plated
36	Spring pin	Carbon tool steel	Black zinc chromated
37	Parallel pin	Stainless steel	
38	Hexagon socket head set screw	Chrome molybdenum steel	Black zinc chromated
39	Hexagon socket head set screw	Chrome molybdenum steel	Black zinc chromated
40	Hexagon socket head set screw	Chrome molybdenum steel	Nickel plated
41	Hexagon socket head set screw	Chrome molybdenum steel	Nickel plated
42	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated
43	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated
44	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated
45	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated
46	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated
47	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated
48	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated
49	Steel ball	Spring steel	Nickel plated
55	Hexagon socket head taper plug	Carbon steel	Nickel plated (Ø16: hexagon socket head plug)
56	Hexagon socket head taper plug	Carbon steel	Nickel plated (Ø16: hexagon socket head plug)
57	Lubretainer	Special resin	

Replacement Parts: Seal Kit

No.	Description	Qty.	MY2C16G	MY2C25G	MY2C40G				
14	Seal belt	1	MY16-16A-Stroke	MY25-16A-Stroke	MY40-16A-Stroke				
15	Dust seal band	1	MY2H16-16B-Stroke	MY2H16-16B-Stroke MY2H25-16B-Stroke					
54	O-ring	2	ø4 x ø1.8 x ø1.1	ø4 x ø1.8 x ø1.1	ø7.15 x ø3.75 x ø1.7				
22	Scraper	2							
50	Piston seal	2							
51	Cushion seal	2	MY2B16-PS	MY2B25-PS	MY1B40-PS				
52	Tube gasket	2							
53	O-ring	4							

^{*} Seal kit includes ②, ⑤, ⑤, ⑤ and ⑥. Order the seal kit based on each bore size.

MY1B

MY1M

MY1C

MY1H

MY1HT

MY1□W

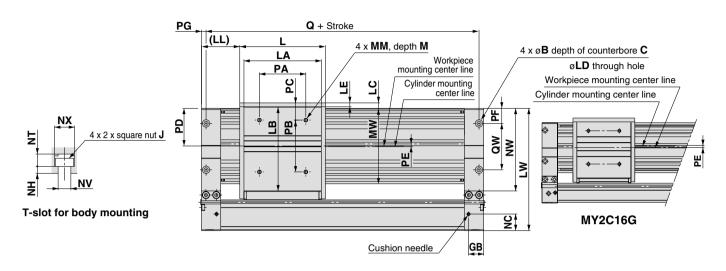
MY2C

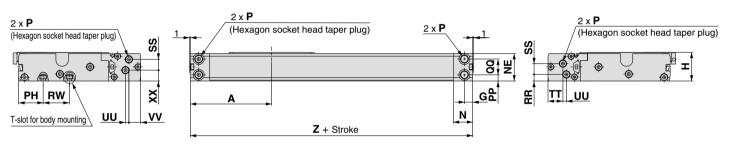
MY2H□

MY3A MY3B

^{*} Seal kit includes a grease pack (10 g).

When 4 and 5 are shipped as single units, a grease pack (10 g per 1000 strokes) is included.


Order with the following part number when only the grease pack is needed.

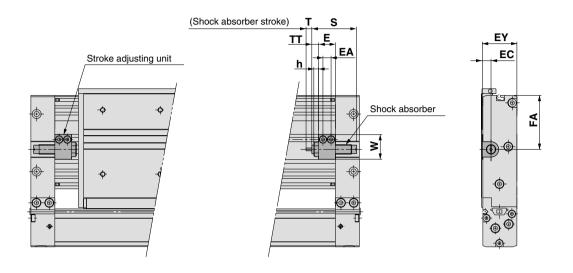

Grease pack part number:GR-S-010 (10 g), GR-S-020 (20 g)

Series MY2C

ø16, ø25, ø40

MY2C Bore size G - Stroke

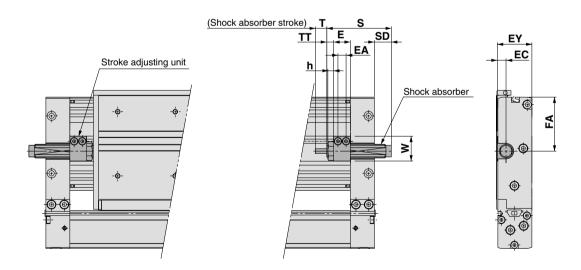
																									(mm)
Model	Α	В	С	G	GB	Н	L	,	J	LA	LB	LC	LD	LE	(LL)	LW	M	М	М	MW	N	NC	NE	NH	NT
MY2C16G	80	6.5	3.3	8.5	17	28	80	M3 >	₹0.5	70	72.4	6	3.4	5	40	104	7	M4 x	0.7	64.6	20	14	27	2	3.5
MY2C25G	105	9.5	5.4	10.7	19.5	37	110.8	M5 x	¢ 0.8	100	108.7	7	5.5	5	49.6	158	9	M5 x	8.0	97.5	25	21.3	35.5	3	5.3
MY2C40G	165	14	8.6	15.5	31.5	58	180	M6 >	(1	158	135.3	7	9	5	75	214	13	M6 x	(1	121.5	40	32.4	56.5	4	6.5
Model	NV	NW	NX	F	•	PA	РВ	PC	PD	PE	PF	PG	PH	PP	Q	QQ	QW	RR	RW	SS	TT	UU	VV	XX	Z
MY2C16G	3.4	69.2	5.8	M5 x	8.0	40	43	16.5	32	2.2	9.8	4	21.3	5.3	152	16.4	40	5.3	22	9.7	12.5	3	10.5	12	160
MY2C25G	5.5	106.8	8.5	1/	'8	60	67	22.2	48.7	0.8	19.5	6	31.8	8	198	20.4	60	8.5	34	14	19.3	4.4	15.3	14	210
MY2C40G	6.6	135.1	10.5	1/	4	100	77	29	60.5	8.5	40.5	9	38	16	312	25.5	57	11	45	21.5	35.4	2	29	23	330

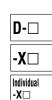

"P" indicates cylinder supply ports. * The plug for "P" MY2C16G is a hexagon socket head plug.

Mechanically Jointed Rodless Cylinder Cam Follower Guide Type Series MY2C

Stroke adjusting unit

Low load shock absorber


MY2C Bore size G - Stroke L


Applicable cylinder	E	EA	EC	EY	FA	h	S	Т	TT	W	Shock absorber model
MY2C16	14.4	7	6	27	38.5	4	40.8	6	5.6 (Max. 11.2)	16.5	RB0806
MY2C25	17.5	8.5	9	36	56.4	5	46.7	7	7.1 (Max. 18.6)	25.8	RB1007
MY2C40	25	13	13.5	56.5	67.8	6	67.3	12	10 (Max. 26)	38	RB1412

Heavy-loaded shock absorber

MY2C Bore size G - Stroke H

Applicable cylinder	E	EA	EC	EY	FA	h	S	SD	Т	TT	W	Shock absorber model
MY2H25	17.5	8.5	9	36	56.4	6	67.3	17.7	12	7.1 (Max. 18.6)	25.8	RB1412
MY2H40	25	13	13.5	56.5	67.8	6	73.2	_	15	10 (Max. 26)	38	RB2015

Technical

MY1B

MY1M

MY1C

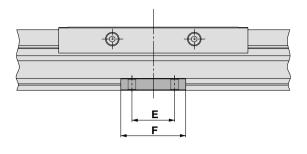
MY1H

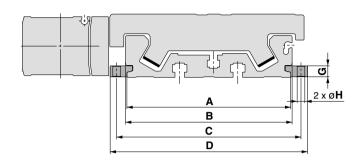
MY1HT

MY10W

MY2C

MY2H□


MY3A MY3B

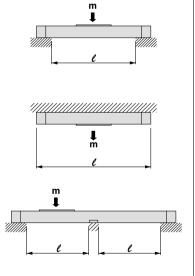


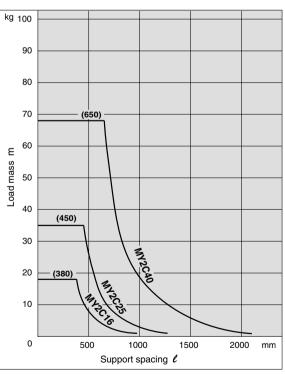
Series MY2C

Side Support

Side support MYC-S□A

Model	Applicable cylinder	Α	В	С	D	E	F	G	øΗ
MYC-S16A	MY2C16	60.6	64.6	70.6	77.2	15	26	4.9	3.4
MYC-S25A	MY2C25	95.9	97.5	107.9	115.5	25	38	6.4	4.5
MYC-S40A	MY2C40	121.5	121.5	134.5	145.5	45	64	11.7	6.6

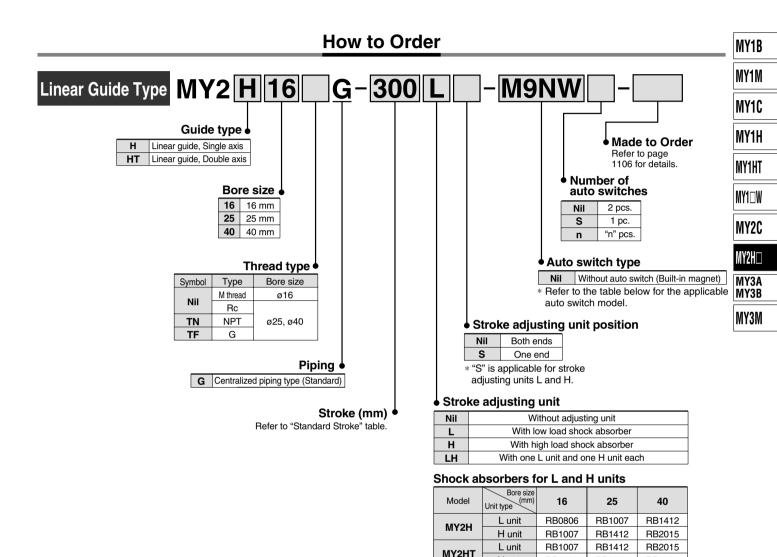

^{*} A set of side supports consists of a left support and a right support.


Guide for Using Side Support

For long stroke operation, the cylinder tube may deflect due to its own mass and/or load mass. In such cases, install a side support at the intermediate stroke position. The spacing (ℓ) of the side support must be no more than the values shown in the graph at right.

⚠ Caution

- ① If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Make sure to level the cylinder tube when mounting the cylinder. For long stroke operation involving vibration and impact, the use of side supports is recommended even if the support spacing is within the allowable limits shown in the graph.
- ② Support brackets are not for mounting. They should be used only to provide support.



Mechanically Jointed Rodless Cylinder Linear Guide Type

Series MY2H/HT

ø16, ø25, ø40

Applicable Auto Switch/Refer to pages 1263 to 1371 for the detailed specifications of auto switches.

an l				140	L	oad volta	ge	Auto swite	ch model	Lead	wire I	ength	n (m)	Pre-wired		
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)	D	DC		Perpendicular entry	In-line entry	0.5 (Nil)	1 (M)	3 (L)	5 (Z)	connector	Applicable load	
-F				3-wire(NPN)		5)/ 10)/		M9NV	M9N	•	•	•	0	0	IC	
switch	_			3-wire(PNP)		5V,12V		M9PV	M9P	•	•	•	0	0	circuit	
		Grommet	Yes	2-wire	24V	12V	12V	M9BV	M9B	•	•	•	0	0	I	Relay,
state	Diagnostic	Grommet	res	3-wire(NPN)	24 V	5V,12V	M9NWV	M9NW	•	•	•	0	0	IC	PLC	
Solid	indication / 2-color \			3-wire(PNP)				M9PWV	M9PW	•	•	•	0	0	circuit	
	(indication)			2-wire		12V		M9BWV	M9BW	•	•	•	0	0		
switch		Grommet	Yes	3-wire (NPN equiv.)	_	5V	_	A96V	A96	•	_	•	_		IC circuit	_
8	_	Grommet		2-wire	24V	12V	100 V	A93V	A93	•	_	•	_	_	_	Relay,
Ree			No	2-wire	24 V	120	100 Vor less	A90V	A90	•	_	•	—	-	_	PLC

^{*} Lead wire length symbols: 0.5 m----- Nil (Example) M9NW

1 m...... M (Example) M9NWM 3 m..... L (Example) M9NWL

m..... Z (Example) M9NWZ

* Refer to pages 1328 and 1329 for the details of auto switches with a pre-wired connector.

* Auto switches are shipped together (not assembled).

 \ast Solid state auto switches marked "O" are produced upon receipt of order.

RB1412

H unit

RB2015

RB2725

D-□

-X□

Individual

-X□

Technical data

^{*} Refer to page 1114 for applicable auto switches other than listed above.

Series MY2H/HT

JIS Symbol

Made to Order Specifications (Refer to pages 1395 to 1565 for details.)

JIS Symbol	Specification
-XB10	Intermediate stroke (Using exclusive body)
-XB11	Long stroke type
-XB20	Stroke adjusting unit with adjusting bolt
-X168	Helical insert thread
-X416	Holder mounting bracket I
-X417	Holder mounting bracket II

Specifications

Bore size (mm)	16	25	40					
Fluid	Air							
Action	Double acting							
Operating pressure range	0.1 to 0.8MPa							
Proof pressure	1.2MPa							
Ambient and fluid temperature		5 to 60°C						
Cushion	Air	cushion, Shock absor	ber					
Lubrication	Not required (Non-lube)							
Stroke length tolerance	+1.8 0							
Port size	M5 x 0.8 Rc 1/8 Rc 1/4							

Stroke Adjusting Unit Specifications

Bore size (m		16	2	5	40			
Unit symbol		L	Н	L	Н	L	Н	
Shock absorber MY2H		RB0806	RB1007	RB1007	RB1412	RB1412	RB2015	
model	MY2HT	RB1007	RB1412	RB1412	RB2015	RB2015	RB2725	
Stroke fine adjusting	range (mm)	0 to −5.6		0 to -	-11.5	0 to −16		
Stroke adjusting		When exceeding the stroke fine adjusting range: Use the Made to Or Specifications "-X416" and "-X417". (Refer to page 1554 for details.)						

^{*} Fine stroke adjustment range is applicable for one side when mounted on a cylinder.

Shock Absorber Specifications

М	odel	RB 0806	RB 1007	RB 1412	RB 2015	RB 2725
Max. energy at	osorption (J)	2.9	5.9	19.6	58.8	147
Stroke absorpt	tion (mm)	6	7	12	15	25
Max. impact sp	eed (mm/s)	1500	1500	1500	1500	1500
Max. operating fr	equency (cycle/min)	80	70	45	25	10
Spring	Extended	1.96	4.22	6.86	8.34	8.83
force (N)	Compressed	4.22	6.86	15.98	20.50	20.01
Operating temp	erature range (°C)			5 to 60		

^{*} The shock absorber service life is different from that of the MY2H/HT cylinder depending on operating conditions. Refer to the Specific Product Precautions for the replacement period.

Piston Speed

Bore size (mm)		16	25	40	
Without stroke adjusting unit	:	100 to 1000 mm/s Note 1)			
Stroke adjusting unit	L unit and H unit	1	100 to 1500 mm/	S	

Note 1) When exceeding the air cushion stroke ranges on page 1094, the **piston speed** should be **100 to 200 mm/s**.

Standard Stroke

Bore size (mm)	Standard stroke (mm) *	Maximum manufacturable stroke (mm)
16	50, 100, 150, 200, 250, 300,	1000
25, 40	350, 400, 450, 500, 550, 600	1500

Strokes are manufacturable in 1 mm increments, up to the maximum stroke. However, add "-XB10" to the end of the part number for non-standard strokes from 51 to 599. Also when exceeding a 600 mm stroke, specify "-XB11" at the end of the model number. Refer to the Made to Order Specifications on page 1405.

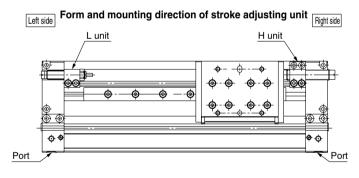
Note 2) Use at a piston speed within the absorption capacity range. Refer to page 1094.

Mechanically Jointed Rodless Cylinder Linear Guide Type

Linear Guide Type Series MY2H/HT

Theoretical Output

								Unit: N				
Bore	Piston	Operating pressure (MPa)										
size (mm)	area (mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8				
16	200	40	60	80	100	120	140	160				
25	490	98	147	196	245	294	343	392				
40	1256	251	377	502	628	754	879	1005				


Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Option

Stroke Adjusting Unit No.

Model	Bore size (mm) Unit type		16	25	40
	L unit	Left	MY2H-A16L1	MY2H-A25L1	MY2H-A40L1
MY2H	L unit	Right	MY2H-A16L2	MY2H-A25L2	MY2H-A40L2
IVI T Z IT	H unit	Left	MY2H-A16H1	MY2H-A25H1	MY2H-A40H1
	n unii	Right	MY2H-A16H2	MY2H-A25H2	MY2H-A40H2
	L unit	Left	MY2HT-A16L1	MY2HT-A25L1	MY2HT-A40L1
MY2HT	L unit	Right	MY2HT-A16L2	MY2HT-A25L2	MY2HT-A40L2
WITZI	H unit	Left	MY2HT-A16H1	MY2HT-A25H1	MY2HT-A40H1
	n unit	Right	MY2HT-A16H2	MY2HT-A25H2	MY2HT-A40H2

Note) Port positions are indicated as right and left from the front.

Stroke adjusting unit Example of LH attachment

Mass

					Unit: kg
Maralal	Bore size	Basic	Additional mass	Stroke adjusti (per	0
Model	(mm)	mass	per 50 mm of stroke	L unit	H unit
	16	0.86	0.22	0.03	0.04
MY2H	25	2.35	0.42	0.06	0.09
	40	6.79	0.76	0.16	0.22
	16	1.27	0.31	0.04	0.08
MY2HT	25	3.70	0.61	0.10	0.18
	40	10.05	1.13	0.27	0.46

Calculation method Example: MY2H25G-300L

 Basic mass
 2.35 kg

 Additional mass
 0.42/50 st

 Mass of L unit
 0.06 kg

 Cylinder stroke
 300 st

 $2.35 + 0.42 \times 300 \div 50 + 0.06 \times 2 = \text{Approx. } 4.99 \text{ kg}$

Replacement Parts

Drive Unit (Cylinder) Replacement Part No.

Model Bore size (mm)	MY2H	MY2HT
16	MY2BH16G	- Stroke
25	MY2BH25□G	- Stroke
40	MY2BH40□G	- Stroke
	=	

Enter a symbol for port thread type inside \square . Note) Order auto switches separately.

MY1B

MY1M

MY1C

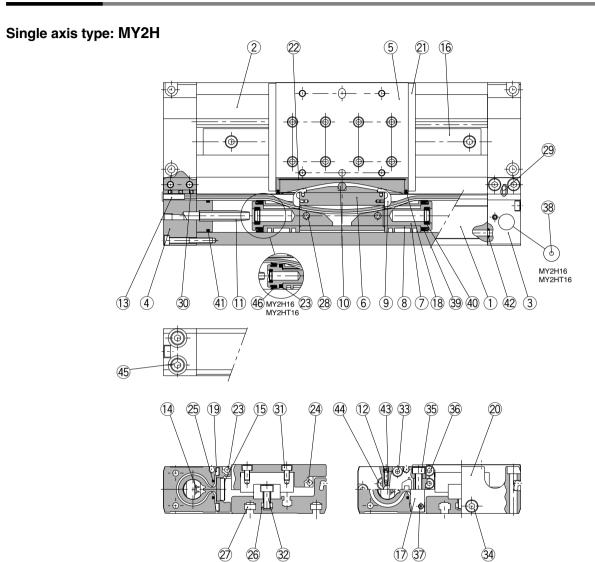
MY1HT

MY1□W

MITILW

MY2C

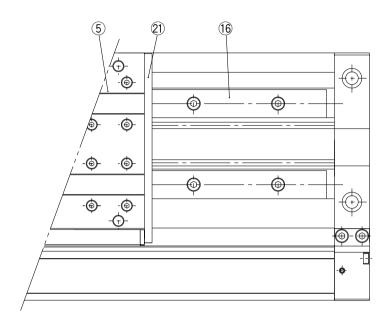
MY2HI MY3A MY3B

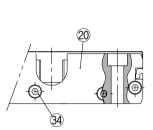

MY3M

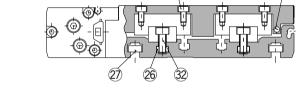
-X□

Series MY2H/HT

Construction


Component Parts


••••	pononi i an		
No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Body	Aluminum alloy	Anodized
3	Head cover WR	Aluminum alloy	Hard anodized
4	Head cover WL	Aluminum alloy	Hard anodized
5	Slide table	Aluminum alloy	Hard anodized
6	Piston yoke	Aluminum alloy	Hard anodized
7	Piston	Aluminum alloy	Chromated
8	Wear ring	Special resin	
9	Belt separator	Special resin	
10	Parallel pin	Stainless steel	
11	Cushion ring	Brass	
12	Cushion needle	Rolled steel	Nickel plated
13	Belt clamp	Special resin	
16	Guide	_	
17	End cover	Aluminum alloy	Hard anodized
19	Bearing	Special resin	
20	End plate	Aluminum alloy	Hard anodized
21	Stopper	Carbon steel	Nickel plated after quenching
22	Top cover	Stainless steel	


No.	Description	Material	Note
23	Magnet	_	
24	Magnet	_	
25	Seal magnet	Rubber magnet	
26	Square nut	Carbon steel	Nickel plated
27	Square nut	Carbon steel	Nickel plated
28	Spring pin	Carbon tool steel	Black zinc chromated
29	Parallel pin	Stainless steel	
30	Hexagon socket head set screw	Chrome molybdenum steel	Black zinc chromated
31	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated
32	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated
33	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated
34	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated
35	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated
36	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated
37	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated
38	Steel ball	Spring steel	Nickel plated
44	Hexagon socket head taper plug	Carbon steel	Nickel plated (ø16: Hexagon socket head plug)
45	Hexagon socket head taper plug	Carbon steel	Nickel plated (ø16: Hexagon socket head plug)
46	Lubretainer	Special resin	

Mechanically Jointed Rodless Cylinder Linear Guide Type Series MY2H/HT

Double axis type: MY2HT

Replacement Parts: Seal Kit

No.	Description	Qty.	MY2H16G/MY2HT16G	MY2H25G/MY2HT25G	MY2H40G/MY2HT40G
14	Seal belt	1	MY16-16A-Stroke	MY25-16A-Stroke	MY40-16A-Stroke
15	Dust seal band	1	MY2H16-16B-Stroke	MY2H25-16B-Stroke	MY2H40-16B-Stroke
43	O-ring	2	ø4 x ø1.8 x ø1.1	ø4 x ø1.8 x ø1.1	ø7.15 x ø3.75 x ø1.7
18	Scraper	2			
39	Piston seal	2			
40	Cushion seal	2	MY2B16-PS	MY2B25-PS	MY1B40-PS
41	Tube gasket	2			
42	O-ring	4			

^{*} Seal kit includes ®, ③, ④, ④ and ②. Order the seal kit based on each bore size.

MY1B

MY1M

MY1C

MY1H

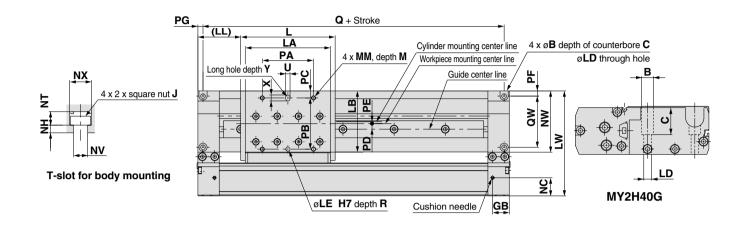
MY1HT

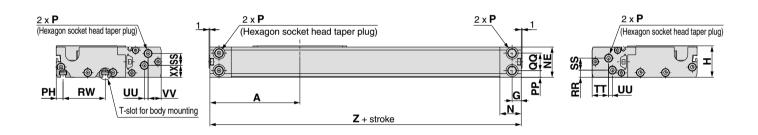
MY1□W

MY2C

MY2H□

MY3A MY3B



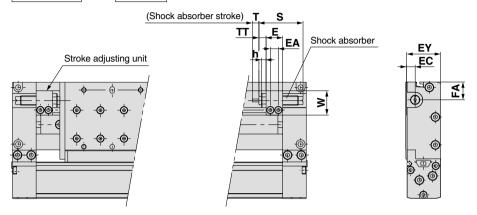

^{*} Seal kit includes a grease pack (10 g).
When (4) and (5) are shipped as single units, a grease pack (20 g) is included.
Order with the following part number when only the grease pack is needed.
Grease pack part number:GR-S-010 (10 g), GR-S-020 (20 g)

Series MY2H/HT

Single Axis Type: Ø16, Ø25, Ø40

MY2H Bore size G - Stroke

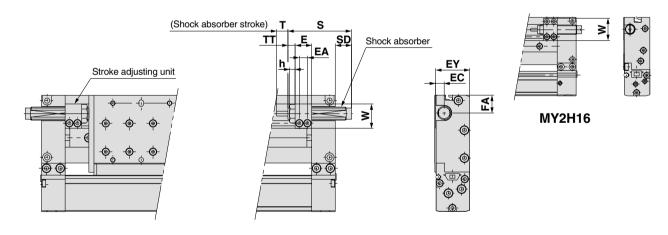
																											(mm)
Model	Α	В	С	G	GB	Н	L		J	LA	LB	LD	LE	(LL)	LW	M	MM	N	NC	NE	NH	NT	ΝV	NW	NX		Р
MY2H16G	80	6.5	3.3	8.5	17	28	80	M3 >	0.5	70	50.4	3.4	4	40	83	7	M4 x 0.7	20	14	27	2	3.5	3.4	48.2	5.8	M5	x 0.8
MY2H25G	105	9.5	5.4	10.7	19.5	37	110.8	M5 >	8.0	100	71.7	5.5	5	49.6	123	9	M5 x 0.8	25	21.3	35.5	3	5.3	5.5	71.8	8.5	1	/8
MY2H40G	165	14	32.5	15.5	31.5	58	180	M6 >	(1	158	80.3	9	6	75	161	13	M6 x 1	40	32.4	56.5	4	6.5	6.6	82.1	10.5	1	/4
Model	PA	PE	В	; P	D P	E PI	PG	РН	PP	Q	QC) G	w	R	RR	RW	SS	тт	· ι	JΙ	JU	٧v	<i>,</i>	Х	хх	Υ	Z
MY2H16G	40	40	7.2	2 2.	8 3.	7 3.	5 4	5.1	5.3	152	16.4	4 4	10	5	5.3	40	9.7	12.	5 4	4 3	3	10.	5 6	3	12	5	160
MY2H25G	60	60	8.2	2 6.	6 2.	7 5.	5 6	7.5	8	198	20.4	4 6	60	5	8.5	50	14	19.	3 !	5 4	1.4	15.	3 7	7.5	14	5	210
MY2H40G	100	70	5.5	5 8.	5 5	17	9	9.5	16	312	25.	5 5	57	8	11	53.5	21.5	35.4	4 (3 2	2	29		9	23	8	330


"P" indicates cylinder supply ports. * The plug for "P" MY2H16G is a hexagon socket head plug.

Mechanically Jointed Rodless Cylinder Linear Guide Type Series MY2H/HT

Stroke adjusting unit

Low load shock absorber


MY2H Bore size G - Stroke L

Applicable cylinder	E	EA	EC	EY	FA	h	S	Т	TT	W	Shock absorber model
MY2H16	14.4	7	6	27	12.5	4	40.8	6	5.6 (Max. 11.2)	16.5	RB0806
MY2H25	17.5	8.5	9	36	19.3	5	46.7	7	7.1 (Max. 18.6)	25.8	RB1007
MY2H40	25	13	13	57	17	6	67.3	12	10 (Max. 26)	38	RB1412

Heavy-loaded shock absorber

MY2H Bore size G - Stroke H

Α	pplicable cylinder	E	EA	EC	EY	FA	h	S	SD	Т	TT	W	Shock absorber model
	MY2H16	14.4	7	6	27	12.5	_	46.7	6.7	7	5.6 (Max. 11.2)	23.5	RB1007
	MY2H25	17.5	8.5	9	36	19.3	6	67.3	17.7	12	7.1 (Max. 18.6)	25.8	RB1412
	MY2H40	25	13	13	57	17	6	73.2	_	15	10 (Max. 26)	38	RB2015

D
-X

Individual

-X□ Technical data

MY1B

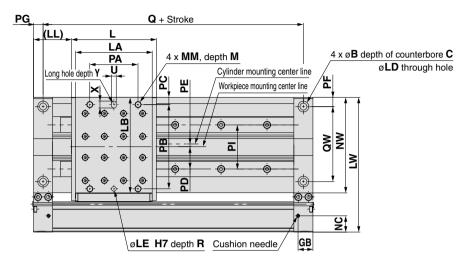
MY1M MY1C

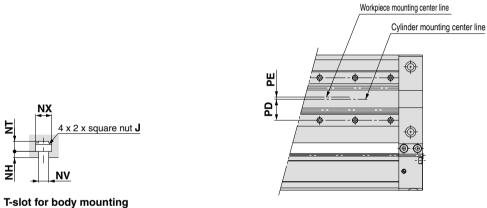
MY1H

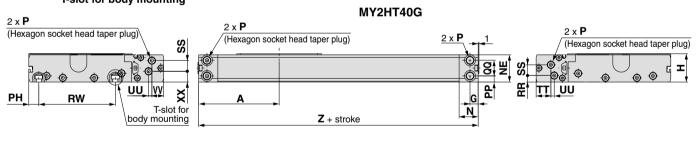
MY1HT

MY1□W

MY2C


MY2H


MY3A MY3B

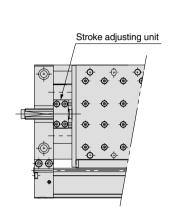

Series MY2H/HT

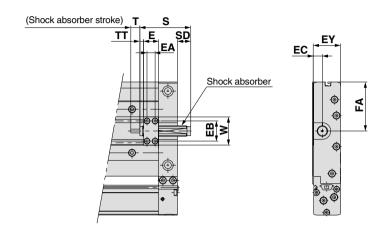
Double Axis Type: Ø16, Ø25, Ø40

MY2HT Bore size G - Stroke

Model	Α	В	С	G	GB	Н	L	,	J	LA	LB	LD	LE	(LL)	LW	M	MI	М	N	NC	NE	NH	NT
MY2HT16G	80	9.5	5.4	8.5	17	28	80	M4 x	0.7	70	87.4	5.5	5	40	120	9	M5 :	x 0.8	20	14	27	3	4.7
MY2HT25G	105	14	8.6	10.7	19.5	37	110.8	M6 x	: 1	100	124.7	9	6	49.6	176	12	M8 :	x 1.25	25	21.3	35.5	4	6.5
MY2HT40G	165	17.5	10.8	15.5	31.5	58	180	M8 x	1.25	158	148.3	11	8	75	229	16	M10	x 1.5	40	32.4	56.5	5	9
NAl - l	N13.7	A INA/	NIV			- DA	-	DO		DE.	DE.		BII	D.	DD.	_	00	0147	_	-	DW	00	
Model	NV	NW	NX	F		PA	PB	PC	PD	PE	PF	PG	PH	PI	PP	Q	QQ	QW	R	RR	RW	SS	TT
MY2HT16G	4.5	85.2	7.3	M5 >	k 0.8	44	80	4	23	1	10	10	10.2	41	5.3	140	16.4	66	5	5.3	69	9.7	12.5
MY2HT25G	6.6	124.8	10.5	1,	/ ₈	63	110	9.4	29.2	3.4	12	12.5	13	57.6	8	185	20.4	98	8	8.5	100	14	19.3
MY2HT40G	9	150.1	14	1,	/_	113	132	8.5	35.5	0.5	20	20	18.5	72	16	290	25.5	110	12	11	116	21.5	35.4

Model	U	UU	VV	X	XX	Υ	Z
MY2HT16G	5	3	10.5	7	12	5	160
MY2HT25G	6	4.4	15.3	9	14	8	210
MY2HT40G	8	2	29	12	23	12	330

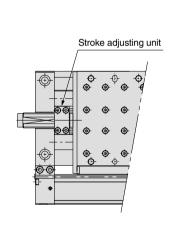

[&]quot;P" indicates cylinder supply ports. * The plug for "P" MY2HT16G is a hexagon socket head plug.

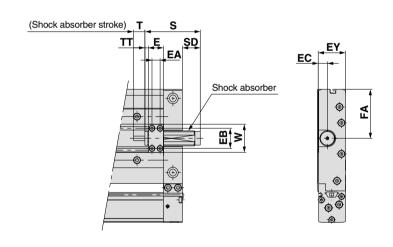

Mechanically Jointed Rodless Cylinder Linear Guide Type Series MY2H/HT

Stroke adjusting unit

Low load shock absorber

MY2HT Bore size G - Stroke L





Applicable cylinder	E	EA	EB	EC	EY	FA	S	SD	Т	TT	W	Shock absorber model
MY2HT16	14.4	7	21	8	27	46.5	46.7	6.7	7	5.6 (Max. 11.2)	28.6	RB1007
MY2HT25	19.7	10.7	26.6	11.2	36	64.8	67.3	17.7	12	4.9 (Max. 16.4)	37.2	RB1412
MY2HT40	29.1	15.1	37	17.2	57	74.5	73.2	_	15	5.9 (Max. 21.9)	51.6	RB2015

Heavy-loaded shock absorber

MY2HT Bore size G - Stroke H

Applicable cylinder	E	EA	EB	EC	EY	FA	S	SD	Т	TT	W	Shock absorber model
MY2HT16	14.4	7	21	8	27	46.5	67.3	27.3	12	5.6 (Max. 11.2)	28.6	RB1412
MY2HT25	19.7	10.7	26.6	11.2	36	64.8	73.2	23.6	15	4.9 (Max. 16.4)	37.2	RB2015
MY2HT40	29.1	15.1	37	17.2	57	74.5	99	24	25	5.9 (Max. 21.9)	51.6	RB2725

D
-X

Individual

-X
Technical data

SMC

MY1B

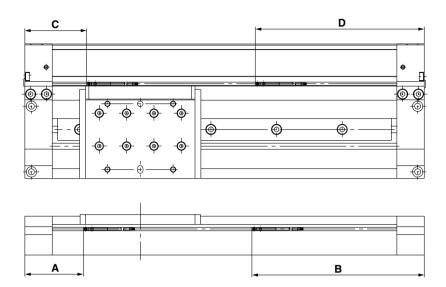
MY1M

MY1C

MY1H

MY1HT

MY1□W


MY2C

MY2H□

MY3A MY3B

Proper Auto Switch Mounting Position (Detection at stroke end)

Note) The operating range is a standard including hysteresis, and is not guaranteed. There may be large variations depending on the surrounding environment (variations on the order of ±30%).

D-A9□, **D-A9**□**V**

Series model	Α	В	Operating range
MY2C16	44	116	
MY2H16	46	114	
MY2HT16	70	90	11
MY2C/H/HT25	54	156	
MY2C/H/HT40	85	245	

Series model	С	D	Operating range
MY2C/H/HT16	27.6	132.4	6.5
MY2C/H/HT25	69	141	
MY2C/H/HT40	90.2	230 8	11

D-M9□, D-M9□V, D-M9□W, D-M9□WV

Series model	Α	В	Operating range
MY2C16	48	112	
MY2H16	50	110	
MY2HT16	74	86	8.5
MY2C/H/HT25	58	152	
MY2C/H/HT40	89	241	

Series model	С	D	Operating range
MY2C/H/HT16	31.6	128.4	4
MY2C/H/HT25	73	137	0.5
MY2C/H/HT40	94.2	235.8	8.5

^{*} Adjust the auto switch after confirming the operating conditions in the actual setting.

Besides the models listed in How to Order, the following auto switches are applicable.

- * For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to pages 1328 and 1329 for details.
- * Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H types) are also available. Refer to page 1290 for details.

Be sure to read before handling. Refer to front matters 54 and 55 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Selection

⚠ Warning

1. Be sure to confirm the specifications.

Products included in this catalog are designed to be used exclusively for the industrial compressed air systems. Do not use them outside the range of pressure and temperature listed in the specifications since it may damage the products or cause malfunctions (Refer to specifications.).

When using fluid other than compressed air, contact with SMC.

↑ Caution

1. When using a cylinder with long strokes, implement an intermediate support.

When using a cylinder with long strokes, implement an intermediate support to prevent the tube from sagging and being deflected by vibration or an external load.

Refer to the Guide for Side Support Application (Series MY2C) on page 1104.

2. For intermediate stops, use a dual-side pressure control circuit

Since the mechanically jointed rodless cylinders have a unique seal structure, slight external leakage may occur. Controlling intermediate stops with a 3 position valve cannot hold the stopping position of the slide table (slider). The speed at the restarting state also may not be controllable. Use the dual-side pressure control circuit with a PAB-connected 3 position valve for intermediate stops.

3. Constant speed

Since the mechanically jointed rodless cylinders have a unique seal structure, a slight speed change may occur. For applications that require constant speed, select an applicable equipment for the level of demand.

4. Load factor of 0.5 or less

When the load factor is high against the cylinder output, it may adversely affect the cylinder (condensation, etc.) and cause malfunctions. Select a cylinder to make the load factor less than 0.5. (Mainly when using an external guide)

5. Cautions on less frequent operation

When the cylinder is used extremely infrequently, operation may be interrupted in order for anchoring and a change lubrication to be performed or service life may be reduced.

6. Consider uncalculated loads such as piping, cableveyor, etc., when selecting a load moment

Calculation does not include the external acting force of piping, cableveyor, etc. Select load factors taking into account the external acting force of piping, cableveyor, etc.

7. Accuracy

The mechanical jointed rodless cylinder does not guarantee traveling parallelism. When accuracy in traveling parallelism and a middle position of stroke is required, please consult with SMC.

Individual
-X
Technical

Technical data

MY1H

MY1B

MY1M

MY1C

MY1HT MY1□W

MY2C

MY2H∎ MY3A

MY3B

Be sure to read before handling. Refer to front matters 54 and 55 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

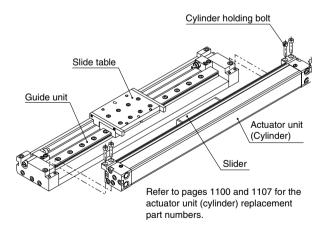
Mounting

1. Do not apply a strong impact or moment on the slide table (slider).

Since the slide table (slider) is supported by precision bearings, do not subject it to strong impact or excessive moment when mounting workpieces.

2. When connecting to a load which has an external guide mechanism, use a discrepancy absorption mechanism.

A mechanically jointed rodless cylinder can be used with a direct load within the allowable range for each guide type, however, align carefully when connecting to a load with an external guide mechanism.

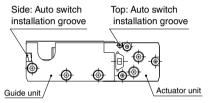

Mount the external guide mounting brackets and floating brackets in a place where the required degree of freedom for the floating Y and Z axes can be secured.

The thrust transmission area of the floating bracket must be fixed so that it does not partially contact the body.

* Refer to the Coordinates and Moment in Model Selection on page 1089 for the details of floating Y and Z axes.

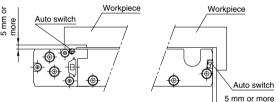
3. Attaching and detaching the actuator unit (cylinder)

When detaching the actuator unit, remove the four cylinder holding bolts and take the actuator unit off the guide unit. When attaching the actuator unit, insert the slider into the slide table on the guide unit, and tighten the four holding bolts equally. Since loosened holding bolts may cause damage or malfunction, be sure to secure them tightly.

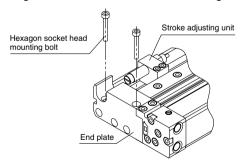

4. Auto Switch Mounting

The series MY2 can be equipped with auto switches on the top of the actuator unit (cylinder) and on the side of the guide unit, but use caution in the following cases.

<Mounting an auto switch on the top of the actuator unit (cylinder)>


For auto switches with perpendicular electrical entry, the lead wire may interfere with the workpiece depending on the workpiece mounting type and shape.

Be sure to allow a clearance in order to keep the lead wire from interfering with the workpiece.


5. Workpiece Mounting

When mounting a magnetic workpiece, the auto switch may stop working due to a loss of magnetic force in the cylinder depending on the mounting position. Allow a clearance of 5 mm or more between the auto switch and workpiece.

6. Body Mounting

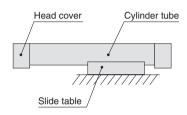
When mounting MY2H40G with stroke adjusting unit from the top, move the stroke adjusting unit and secure the body with the end plate mounting holes. After mounting, return the stroke adjusting unit to the stroke end and secure it again.

7. Do not generate negative pressure in the cylinder tube.

Take precautions under operating conditions in which negative pressure is generated inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt. Do not generate negative pressure in the cylinder by forcibly moving it with an external force during the trial operation or dropping it with self-mass under the non-pressure state, etc. When the negative pressure is generated, slowly move the cylinder by hand and move the stroke back and forth. After doing so, if air leakage still occurs, please consult with SMC.

Be sure to read before handling. Refer to front matters 54 and 55 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

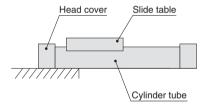
Mounting


⚠ Caution

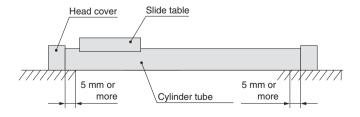
11. Do not mount cylinders as they are twisted.

When mounting, be sure for a cylinder tube not to be twisted. The flatness of the mounting surface is not appropriate, the cylinder tube is twisted, which may cause air leakage due to the detachment of a seal belt, damage a dust seal band, and cause malfunctions.

12. Do not mount a slide table on the fixed equipment surface.


It may cause damage or malfunctions since an excessive load is applied to the bearing.

Mounting with a slide table (slider)


13. Consult with SMC when mounting in a cantilevered way.

Since the cylinder body deflects, it may cause malfunctions. Please consult with SMC when using it this way.

Mounting in a cantilevered way

14. Fixed parts of the cylinder on both ends must have at least 5 mm of contact between where the bottom of the cylinder tube and the equipment surface.

15 .Consider uncalculated loads such as piping, cableveyor, etc., when selecting a load moment

Calculation does not include the external acting force of piping, cableveyor, etc. Select load factors taking into account the external acting force of piping, cableveyor, etc.

Handling

⚠ Caution

1. Do not unnecessarily alter the guide adjustment setting. The adjustment of the guide is preset and does not require readjustment under normal operating conditions. Therefore, do not unnecessarily alter the guide adjustment setting.

2. Avoid operation that causes negative pressure inside the cylinder.

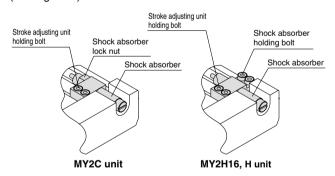
Take precautions under operating conditions in which negative pressure is increased inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt.

3. Do not get your hands caught during cylinder operation.

For the cylinder with a stroke adjusting unit, the space between the slide table and stroke adjusting unit is very small, and your hands may get caught. When operating without a protective cover, be careful not to get your hands caught.

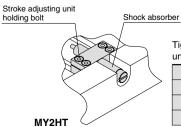
4. Do not operate with the stroke adjusting unit fixed in an intermediate position.

When the stroke adjusting unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In such cases, the use of the adjusting bolt mounting brackets, available per made-to-order specifications -X416 and -X417, is recommended.


For other lengths, please consult with SMC.

<Securing the unit body>

The unit body is secured by equally tightening the two stroke adjusting unit holding bolts. (See drawings below.)


<Stroke adjustment of shock absorber> For MY2C and MY2H

Loosen the shock absorber lock nut (shock absorber holding bolts for MY2H16, H unit), and adjust the stroke by rotating the shock absorber. After the adjustment, tighten the lock nut (holding bolts) to secure the shock absorber.

For MY2HT

Loosen the two unit holding bolts on the shock absorber side, rotate the shock absorber and adjust the stroke. After the adjustment, secure the shock absorber by tightening the unit holding bolts equally.

Tightening torque for stroke adjusting unit holding bolts

Bore size (mm) Tightening torque 16 0.7 25 1.8 40 5.8

MY1B

MY1M

MY1C

MY1H

MY1HT

MY1□W

MY2C

MY2H

МҮЗА

MY3B

MY3M

Individual -X□ Technical

Be sure to read before handling. Refer to front matters 54 and 55 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Operating Environment

⚠ Warning

1. Do not use in environments where the cylinder will come in contact with coolants, cutting oil, water drops, adhesive foreign particles, dust, etc., and do not operate the cylinder with compressed air that contains drainage and foreign matter.

Foreign matter or liquids on the cylinder interior or exterior can wash away the lubricating grease, which can lead to deterioration and damage of the dust seal band and seal materials, causing a danger of malfunction.

When operating in locations with exposure to water, oil drops, or dust, provide protection such as a cover to prevent direct contact with the cylinder, or mount the dust seal band surface downwards, and operate it with clean compressed air.

2. Carry out cleaning and grease application suitable for the operating environment.

Carry out cleaning regularly when using in an operating environment in which the product is likely to get dirty.

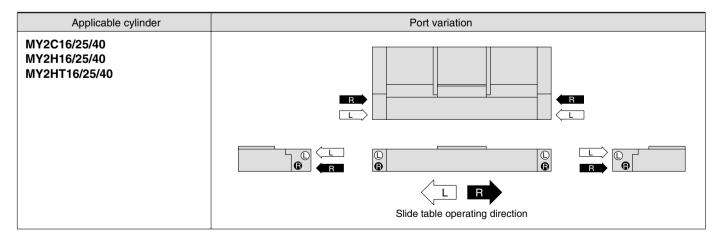
After cleaning, be sure to apply grease to the top side of the cylinder tube and the rotating part of the dust seal band. Apply grease to these parts regularly even if not after cleaning. Please consult with SMC for the cleaning of the slide table (slider) interior and grease application.

Service Life and Replacement Period of Shock Absorber

⚠ Caution

1. Allowable operating cycle under the specifications set in this catalog is shown below.

1.2 million times RB08□□


2 million times RB10□□ to RB2725

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25 °C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

Centralized Piping Port Variations

∧ Caution

Head cover piping connection can be freely selected to best suit different piping conditions.

